In this paper, we use a univariate multiquadric quasi-interpolation scheme to solve the one-dimensional nonlinear sine-Gordon equation that is related to many physical phenomena. We obtain a numerical scheme by using ...In this paper, we use a univariate multiquadric quasi-interpolation scheme to solve the one-dimensional nonlinear sine-Gordon equation that is related to many physical phenomena. We obtain a numerical scheme by using the derivative of the quasi-interpolation to approximate the spatial derivative and a difference scheme to approximate the temporal derivative. The advantage of the obtained scheme is that the algorithm is very simple so that it is very easy to implement. The results of numerical experiments are presented and compared with analytical solutions to confirm the good accuracy of the presented scheme.展开更多
The aim of this survey paper is to propose a new concept "generator". In fact, generator is a single function that can generate the basis as well as the whole function space. It is a more fundamental concept than ba...The aim of this survey paper is to propose a new concept "generator". In fact, generator is a single function that can generate the basis as well as the whole function space. It is a more fundamental concept than basis. Various properties of generator are also discussed. Moreover, a special generator named multiquadric function is introduced. Based on the multiquadric generator, the multiquadric quasi-interpolation scheme is constructed, and furthermore, the properties of this kind of quasi-interpolation are discussed to show its better capacity and stability in approximating the high order derivatives.展开更多
Based on the multiquadric trigonometric B-spline quasi-interpolant, this paper proposes a meshless scheme for some partial differential equations whose solutions are periodic with respect to the spatial variable. This...Based on the multiquadric trigonometric B-spline quasi-interpolant, this paper proposes a meshless scheme for some partial differential equations whose solutions are periodic with respect to the spatial variable. This scheme takes into ac- count the periodicity of the analytic solution by using derivatives of a periodic quasi-interpolant (multiquadric trigonometric B-spline quasi-interpolant) to approximate the spatial derivatives of the equations. Thus, it overcomes the difficulties of the previous schemes based on quasi-interpolation (requiring some additional boundary conditions and yielding unwanted high-order discontinuous points at the boundaries in the spatial domain). Moreover, the scheme also overcomes the dif- ficulty of the meshless collocation methods (i.e., yielding a notorious ill-conditioned linear system of equations for large collocation points). The numerical examples that are presented at the end of the paper show that the scheme provides excellent approximations to the analytic solutions.展开更多
Quasi-interpolation has been studied in many papers, e. g., [5]. Here we introduce nonseparable scaling function quasi-interpolation and show that its approximation can provide similar convergence properties as scalar...Quasi-interpolation has been studied in many papers, e. g., [5]. Here we introduce nonseparable scaling function quasi-interpolation and show that its approximation can provide similar convergence properties as scalar wavelet system. Several equivalent statements of accuracy of nonseparable scaling function are also given. In the numerical experiments, it appears that nonseparable scaling function interpolation has better convergence results than scalar wavelet systems in some cases.展开更多
In this paper,based on the basis composed of two sets of splines with distinct local supports,cubic spline quasi-interpolating operators are reviewed on nonuniform type-2 triangulation.The variation diminishing operat...In this paper,based on the basis composed of two sets of splines with distinct local supports,cubic spline quasi-interpolating operators are reviewed on nonuniform type-2 triangulation.The variation diminishing operator is defined by discrete linear functionals based on a fixed number of triangular mesh-points,which can reproduce any polynomial of nearly best degrees.And by means of the modulus of continuity,the estimation of the operator approximating a real sufficiently smooth function is reviewed as well.Moreover,the derivatives of the nearly optimal variation diminishing operator can approximate that of the real sufficiently smooth function uniformly over quasi-uniform type-2 triangulation.And then the convergence results are worked out.展开更多
In this paper, by using multivariate divided differences to approximate the partial derivative and superposition, we extend the multivariate quasi-interpolation scheme based on dimension-splitting technique which can ...In this paper, by using multivariate divided differences to approximate the partial derivative and superposition, we extend the multivariate quasi-interpolation scheme based on dimension-splitting technique which can reproduce linear polynomials to the scheme quadric polynomials. Furthermore, we give the approximation error of the modified scheme. Our multivariate multiquadric quasi-interpolation scheme only requires information of lo- cation points but not that of the derivatives of approximated function. Finally, numerical experiments demonstrate that the approximation rate of our scheme is significantly im- proved which is consistent with the theoretical results.展开更多
This paper is concerned with a piecewise smooth rational quasi-interpolation with algebraic accuracy of degree(n+1)to approximate the scattered data in R 3.We firstly use the modified Taylor expansion to expand the me...This paper is concerned with a piecewise smooth rational quasi-interpolation with algebraic accuracy of degree(n+1)to approximate the scattered data in R 3.We firstly use the modified Taylor expansion to expand the mean value coordinates interpolation with algebraic accuracy of degree one to one with algebraic accuracy of degree(n+1).Then,based on the triangulation of the scattered nodes in R^(2),on each triangle a rational quasi-interpolation function is constructed.The constructed rational quasi-interpolation is a linear combination of three different expanded mean value coordinates interpolations and it has algebraic accuracy of degree(n+1).By comparing accuracy,stability,and efficiency with the C^(1)-Tri-interpolation method of Goodman[16]and the MQ Shepard method,it is observed that our method has some computational advantages.展开更多
In this paper, we propose a new approach to solve the approximate implicitization problem based on RBF networks and MQ quasi-interpolation. This approach possesses the advantages of shape preserving, better smoothness...In this paper, we propose a new approach to solve the approximate implicitization problem based on RBF networks and MQ quasi-interpolation. This approach possesses the advantages of shape preserving, better smoothness, good approximation behavior and relatively less data etc. Several numerical examples are provided to demonstrate the effectiveness and flexibility of the proposed method.展开更多
Quasi-interpolation is very useful in the study of approximation theory and its applications,since it can yield solutions directly without the need to solve any linear system of equations.Based on the good performance...Quasi-interpolation is very useful in the study of approximation theory and its applications,since it can yield solutions directly without the need to solve any linear system of equations.Based on the good performance,Chen and Wu presented a kind of multiquadric (MQ) quasi-interpolation,which is generalized from the L D operator,and used it to solve hyperbolic conservation laws and Burgers’ equation.In this paper,a numerical scheme is presented based on Chen and Wu’s method for solving the Korteweg-de Vries (KdV) equation.The presented scheme is obtained by using the second-order central divided difference of the spatial derivative to approximate the third-order spatial derivative,and the forward divided difference to approximate the temporal derivative,where the spatial derivative is approximated by the derivative of the generalized L D quasi-interpolation operator.The algorithm is very simple and easy to implement and the numerical experiments show that it is feasible and valid.展开更多
Based on the definition of MQ-B-Splines,this article constructs five types of univariate quasi-interpolants to non-uniformly distributed data. The error estimates and the shape-preserving properties are shown in detai...Based on the definition of MQ-B-Splines,this article constructs five types of univariate quasi-interpolants to non-uniformly distributed data. The error estimates and the shape-preserving properties are shown in details.And examples are shown to demonstrate the capacity of the quasi-interpolants for curve representation.展开更多
In this paper we use the simplex B-spline representation of polynomials or piecewise polynomials in terms of their polar forms to construct several differential or discrete bivariate quasi interpolants which have an o...In this paper we use the simplex B-spline representation of polynomials or piecewise polynomials in terms of their polar forms to construct several differential or discrete bivariate quasi interpolants which have an optimal approximation order.This method provides an efficient tool for describing many approximation schemes involving values and(or) derivatives of a given function.展开更多
Suppose that we want to approximate fC[0,1]by polynomials in P_n,using only its values on X_n={i/n,0≤i≤n}.This can be done by the Lagrange interpolant L_n f or the classical Bernstein polynomial B_n f.But,when n ten...Suppose that we want to approximate fC[0,1]by polynomials in P_n,using only its values on X_n={i/n,0≤i≤n}.This can be done by the Lagrange interpolant L_n f or the classical Bernstein polynomial B_n f.But,when n tends to infinity,L_n f does not converge to f in general and the convergence of B_n f to fis very slow.We define a family of operators B^(k)_n, n≥k,which are intermediate ones between B(0)_n=B^(1)_n=B_n and B^(n)_n=L_n,and we study some of their properties.In particular,we prove a Voronovskaja-type theorem which asserts that B^(k)_n f-f=0(n^(-[(k+2)/2))for f sufficiently regular. Moreover,B(k)_n f uses only values of B_n f and its derivaties and can be computed by De Casteljau or subdivision algorithms.展开更多
In this paper, we will use the 2r-th Ditzian-Totik modulus of smoothness wψ2r(f,t)p to discuss the direct and inverse theorem of approximation by Left-Bernstein-Durrmeyer quasi-interpolants Mn[2r-1]f for functions of...In this paper, we will use the 2r-th Ditzian-Totik modulus of smoothness wψ2r(f,t)p to discuss the direct and inverse theorem of approximation by Left-Bernstein-Durrmeyer quasi-interpolants Mn[2r-1]f for functions of the space Lp[0,1] (1≤ p≤ +∞).展开更多
Bernstein-Kantorovich quasi-interpolants K^(2r-1)n(f, x) are considered and direct, inverse and equivalence theorems with Ditzian-Totik modulus of smoothness ω^2rφ(f, t)p (1 ≤ p ≤+∞) are obtained.
In order to obtain much faster convergence, Miiller introduced the left Gamma quasi- interpolants and obtained an approximation equivalence theorem in terms of 2r wφ (f,t)p. Cuo extended the MiiUer's results to w...In order to obtain much faster convergence, Miiller introduced the left Gamma quasi- interpolants and obtained an approximation equivalence theorem in terms of 2r wφ (f,t)p. Cuo extended the MiiUer's results to wφ^24 (f, t)∞. In this paper we improve the previous results and give a weighted approximation equivalence theorem.展开更多
Recently some classical operator quasi-interpolants were introduced to obtain much faster convergence. We consider left Gamma quasi-interpolants and give a pointwise simultaneous approximation equivalence theorem with...Recently some classical operator quasi-interpolants were introduced to obtain much faster convergence. We consider left Gamma quasi-interpolants and give a pointwise simultaneous approximation equivalence theorem with ωφλ^2r(f,t)∞ by means of unified the classical modulus and Ditzian-Totick modulus.展开更多
The purpose of this paper is to propose and study a class of quasi-interpolating operators in multivariate spline space S-1/2(Delta(mn)(2*)) on non-uniform type-2 triangulation. Based on the operators, we construct cu...The purpose of this paper is to propose and study a class of quasi-interpolating operators in multivariate spline space S-1/2(Delta(mn)(2*)) on non-uniform type-2 triangulation. Based on the operators, we construct cubature formula for two-dimensional hypersingular integrals. Some computing work have been done and the results are quite satisfactory.展开更多
Abstract The rate of convergence for the Gamma operators cannot be faster than $$O{\left( {\frac{1}{n}} \right)}$$. In order to obtain much faster convergence, quasi-interpolants in the sense of Sablonnière are c...Abstract The rate of convergence for the Gamma operators cannot be faster than $$O{\left( {\frac{1}{n}} \right)}$$. In order to obtain much faster convergence, quasi-interpolants in the sense of Sablonnière are considered. For the first time in the theory of quasi-interpolants, the strong converse inequality is solved in sup-norm with the K-functional $$K^{\alpha }_{\lambda } {\left( {f,t^{{2r}} } \right)}\;{\left( {0 \leqslant \lambda \leqslant 1,\;0展开更多
Recently some classical operator quasi-interpolants were introduced to obtain much faster convergence. A.T. Diallo investigated some approximation properties of Szasz-Mirakjan Quasi-Interpolants, but he obtained only ...Recently some classical operator quasi-interpolants were introduced to obtain much faster convergence. A.T. Diallo investigated some approximation properties of Szasz-Mirakjan Quasi-Interpolants, but he obtained only direct theorem with Ditzian-Totik modulus wφ^2r (f, t). In this paper, we extend Diallo's result and solve completely the characterization on the rate of approximation by the method of quasi-interpolants to functions f ∈ CB[0, ∞) by making use of the unified modulus wφ^2r(f, t) (0≤λ≤ 1).展开更多
We introduce a new type of modified Bernstein quasi-interpolants, which can be used to approximate functions with singularities. We establish direct, inverse, and equivalent theorems of the weighted approximation of t...We introduce a new type of modified Bernstein quasi-interpolants, which can be used to approximate functions with singularities. We establish direct, inverse, and equivalent theorems of the weighted approximation of this modified quasi-interpolants. Some classical results on approximation of continuous functions are generalized to the weighted approximation of functions with singularities.展开更多
基金supported by the State Key Development Program for Basic Research of China (Grant No 2006CB303102)Science and Technology Commission of Shanghai Municipality,China (Grant No 09DZ2272900)
文摘In this paper, we use a univariate multiquadric quasi-interpolation scheme to solve the one-dimensional nonlinear sine-Gordon equation that is related to many physical phenomena. We obtain a numerical scheme by using the derivative of the quasi-interpolation to approximate the spatial derivative and a difference scheme to approximate the temporal derivative. The advantage of the obtained scheme is that the algorithm is very simple so that it is very easy to implement. The results of numerical experiments are presented and compared with analytical solutions to confirm the good accuracy of the presented scheme.
基金Supported by the 973program-2006CB303102SGST 09DZ 2272900NSFC No.11026089
文摘The aim of this survey paper is to propose a new concept "generator". In fact, generator is a single function that can generate the basis as well as the whole function space. It is a more fundamental concept than basis. Various properties of generator are also discussed. Moreover, a special generator named multiquadric function is introduced. Based on the multiquadric generator, the multiquadric quasi-interpolation scheme is constructed, and furthermore, the properties of this kind of quasi-interpolation are discussed to show its better capacity and stability in approximating the high order derivatives.
基金supported by the Shanghai Guidance of Science and Technology,China(Grant No.12DZ2272800)the Natural Science Foundation of Education Department of Anhui Province,China(Grant No.KJ2013B203)the Foundation of Introducing Leaders of Science and Technology of Anhui University,China(Grant No.J10117700057)
文摘Based on the multiquadric trigonometric B-spline quasi-interpolant, this paper proposes a meshless scheme for some partial differential equations whose solutions are periodic with respect to the spatial variable. This scheme takes into ac- count the periodicity of the analytic solution by using derivatives of a periodic quasi-interpolant (multiquadric trigonometric B-spline quasi-interpolant) to approximate the spatial derivatives of the equations. Thus, it overcomes the difficulties of the previous schemes based on quasi-interpolation (requiring some additional boundary conditions and yielding unwanted high-order discontinuous points at the boundaries in the spatial domain). Moreover, the scheme also overcomes the dif- ficulty of the meshless collocation methods (i.e., yielding a notorious ill-conditioned linear system of equations for large collocation points). The numerical examples that are presented at the end of the paper show that the scheme provides excellent approximations to the analytic solutions.
文摘Quasi-interpolation has been studied in many papers, e. g., [5]. Here we introduce nonseparable scaling function quasi-interpolation and show that its approximation can provide similar convergence properties as scalar wavelet system. Several equivalent statements of accuracy of nonseparable scaling function are also given. In the numerical experiments, it appears that nonseparable scaling function interpolation has better convergence results than scalar wavelet systems in some cases.
基金The authors wish to express our great appreciation to Prof.Renhong Wang for his valuable suggestions.Also,the authors would like to thank Dr.Chongjun Li and Dr.Chungang Zhu for their helpThis work is supported by National Basic Research Program of China(973 Project No.2010CB832702)+3 种基金R and D Special Fund for Public Welfare Industry(Hydrodynamics,Grant No.201101014)National Science Funds for Distinguished Young Scholars(Grant No.11125208)Programme of Introducing Talents of Discipline to Universities(111 project,Grant No.B12032)This work is supported by the Fundamental Research Funds for the Central Universities,and Hohai University Postdoctoral Science Foundation 2016-412051.
文摘In this paper,based on the basis composed of two sets of splines with distinct local supports,cubic spline quasi-interpolating operators are reviewed on nonuniform type-2 triangulation.The variation diminishing operator is defined by discrete linear functionals based on a fixed number of triangular mesh-points,which can reproduce any polynomial of nearly best degrees.And by means of the modulus of continuity,the estimation of the operator approximating a real sufficiently smooth function is reviewed as well.Moreover,the derivatives of the nearly optimal variation diminishing operator can approximate that of the real sufficiently smooth function uniformly over quasi-uniform type-2 triangulation.And then the convergence results are worked out.
文摘In this paper, by using multivariate divided differences to approximate the partial derivative and superposition, we extend the multivariate quasi-interpolation scheme based on dimension-splitting technique which can reproduce linear polynomials to the scheme quadric polynomials. Furthermore, we give the approximation error of the modified scheme. Our multivariate multiquadric quasi-interpolation scheme only requires information of lo- cation points but not that of the derivatives of approximated function. Finally, numerical experiments demonstrate that the approximation rate of our scheme is significantly im- proved which is consistent with the theoretical results.
基金The work was supported by the National Natural Science Foundation of China(No.11271041,No.91630203)CASP of China Grant(No.MJ-F-2012-04).
文摘This paper is concerned with a piecewise smooth rational quasi-interpolation with algebraic accuracy of degree(n+1)to approximate the scattered data in R 3.We firstly use the modified Taylor expansion to expand the mean value coordinates interpolation with algebraic accuracy of degree one to one with algebraic accuracy of degree(n+1).Then,based on the triangulation of the scattered nodes in R^(2),on each triangle a rational quasi-interpolation function is constructed.The constructed rational quasi-interpolation is a linear combination of three different expanded mean value coordinates interpolations and it has algebraic accuracy of degree(n+1).By comparing accuracy,stability,and efficiency with the C^(1)-Tri-interpolation method of Goodman[16]and the MQ Shepard method,it is observed that our method has some computational advantages.
基金Project supported by the National Natural Science Fbundation of China(No.10271022,No.60373093 and No.60533060).
文摘In this paper, we propose a new approach to solve the approximate implicitization problem based on RBF networks and MQ quasi-interpolation. This approach possesses the advantages of shape preserving, better smoothness, good approximation behavior and relatively less data etc. Several numerical examples are provided to demonstrate the effectiveness and flexibility of the proposed method.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 11070131 10801024+1 种基金 U0935004)the Fundamental Research Funds for the Central Universities, China
文摘Quasi-interpolation is very useful in the study of approximation theory and its applications,since it can yield solutions directly without the need to solve any linear system of equations.Based on the good performance,Chen and Wu presented a kind of multiquadric (MQ) quasi-interpolation,which is generalized from the L D operator,and used it to solve hyperbolic conservation laws and Burgers’ equation.In this paper,a numerical scheme is presented based on Chen and Wu’s method for solving the Korteweg-de Vries (KdV) equation.The presented scheme is obtained by using the second-order central divided difference of the spatial derivative to approximate the third-order spatial derivative,and the forward divided difference to approximate the temporal derivative,where the spatial derivative is approximated by the derivative of the generalized L D quasi-interpolation operator.The algorithm is very simple and easy to implement and the numerical experiments show that it is feasible and valid.
基金Supported by the National Natural Science Foundation of China( 1 9971 0 1 7,1 0 1 2 5 1 0 2 )
文摘Based on the definition of MQ-B-Splines,this article constructs five types of univariate quasi-interpolants to non-uniformly distributed data. The error estimates and the shape-preserving properties are shown in details.And examples are shown to demonstrate the capacity of the quasi-interpolants for curve representation.
文摘In this paper we use the simplex B-spline representation of polynomials or piecewise polynomials in terms of their polar forms to construct several differential or discrete bivariate quasi interpolants which have an optimal approximation order.This method provides an efficient tool for describing many approximation schemes involving values and(or) derivatives of a given function.
文摘Suppose that we want to approximate fC[0,1]by polynomials in P_n,using only its values on X_n={i/n,0≤i≤n}.This can be done by the Lagrange interpolant L_n f or the classical Bernstein polynomial B_n f.But,when n tends to infinity,L_n f does not converge to f in general and the convergence of B_n f to fis very slow.We define a family of operators B^(k)_n, n≥k,which are intermediate ones between B(0)_n=B^(1)_n=B_n and B^(n)_n=L_n,and we study some of their properties.In particular,we prove a Voronovskaja-type theorem which asserts that B^(k)_n f-f=0(n^(-[(k+2)/2))for f sufficiently regular. Moreover,B(k)_n f uses only values of B_n f and its derivaties and can be computed by De Casteljau or subdivision algorithms.
基金Supported by Doctoral Foundation of Hebei Province (B2001119) Science Foundation of Hebei Normal University (W2000b02).
文摘In this paper, we will use the 2r-th Ditzian-Totik modulus of smoothness wψ2r(f,t)p to discuss the direct and inverse theorem of approximation by Left-Bernstein-Durrmeyer quasi-interpolants Mn[2r-1]f for functions of the space Lp[0,1] (1≤ p≤ +∞).
基金Supported by the National Natural Science Foundation of China (1057104010801043)+1 种基金Natural Science Foundation of Hebei Province (08M001)Foundation of Education Department of Hebei Province (2008126)
文摘Bernstein-Kantorovich quasi-interpolants K^(2r-1)n(f, x) are considered and direct, inverse and equivalence theorems with Ditzian-Totik modulus of smoothness ω^2rφ(f, t)p (1 ≤ p ≤+∞) are obtained.
文摘In order to obtain much faster convergence, Miiller introduced the left Gamma quasi- interpolants and obtained an approximation equivalence theorem in terms of 2r wφ (f,t)p. Cuo extended the MiiUer's results to wφ^24 (f, t)∞. In this paper we improve the previous results and give a weighted approximation equivalence theorem.
基金the NSF of Zhejiang Province(102005)the Foundation of Key Discipline of ZhejiangProvince(2005)
文摘Recently some classical operator quasi-interpolants were introduced to obtain much faster convergence. We consider left Gamma quasi-interpolants and give a pointwise simultaneous approximation equivalence theorem with ωφλ^2r(f,t)∞ by means of unified the classical modulus and Ditzian-Totick modulus.
文摘The purpose of this paper is to propose and study a class of quasi-interpolating operators in multivariate spline space S-1/2(Delta(mn)(2*)) on non-uniform type-2 triangulation. Based on the operators, we construct cubature formula for two-dimensional hypersingular integrals. Some computing work have been done and the results are quite satisfactory.
基金Supported by the Hebei Provincial Science Foundation of China (A2004000137)Doctoral Research Fund of Hebei Normal University (L2002B03)
文摘Abstract The rate of convergence for the Gamma operators cannot be faster than $$O{\left( {\frac{1}{n}} \right)}$$. In order to obtain much faster convergence, quasi-interpolants in the sense of Sablonnière are considered. For the first time in the theory of quasi-interpolants, the strong converse inequality is solved in sup-norm with the K-functional $$K^{\alpha }_{\lambda } {\left( {f,t^{{2r}} } \right)}\;{\left( {0 \leqslant \lambda \leqslant 1,\;0
基金the National Natural Science Foundation of China (No.10571040)the Doctoral Foundation of Hebei Normal University (No.L2004B04)
文摘Recently some classical operator quasi-interpolants were introduced to obtain much faster convergence. A.T. Diallo investigated some approximation properties of Szasz-Mirakjan Quasi-Interpolants, but he obtained only direct theorem with Ditzian-Totik modulus wφ^2r (f, t). In this paper, we extend Diallo's result and solve completely the characterization on the rate of approximation by the method of quasi-interpolants to functions f ∈ CB[0, ∞) by making use of the unified modulus wφ^2r(f, t) (0≤λ≤ 1).
文摘We introduce a new type of modified Bernstein quasi-interpolants, which can be used to approximate functions with singularities. We establish direct, inverse, and equivalent theorems of the weighted approximation of this modified quasi-interpolants. Some classical results on approximation of continuous functions are generalized to the weighted approximation of functions with singularities.