The transient critical boundary of dynamic security region (DSR) can be approximated by a few hyper planes correlated with instability separation modes. A method to fast predict instability separation modes is propose...The transient critical boundary of dynamic security region (DSR) can be approximated by a few hyper planes correlated with instability separation modes. A method to fast predict instability separation modes is proposed for DSR calculation in power injection space. The method identifies coherent generation groups by the developed K-medoids algorithm, taking a similarity matrix derived from the reachability Grammian as the index. As an experimental result, reachability Grammian matrices under local injections are approximately invariant. It indicates that the generator coherency identifications are nearly consistent for different injections. Then instability separation modes can be predicted at the normal operating point, while average initial acceleration is considered as the measure of the critical generator group to amend the error. Moreover, based on these predicted instability separation modes, a critical point search strategy for DSR calculation is illustrated in the reduced injection space of the critical generators. The proposed method was evaluated using New England Test System, and the computation accuracy and speed in determining the practical DSR were improved.展开更多
Using the theory and method of the ecological footprint, and combining the changes of regional land use, resource environment, population, society and economy, this paper calculated the ecological footprint, ecologica...Using the theory and method of the ecological footprint, and combining the changes of regional land use, resource environment, population, society and economy, this paper calculated the ecological footprint, ecological carrying capacity and ecological surplus/loss in 1986-2002 on the Loess Plateau in northern Shaanxi Province. What is more, this paper has put forward the concept of ecological pressure index, set up ecological pressure index models, and ecological security grading systems, and the prediction models of different ecological footprints, ecological carrying capacity, ecological surplus and ecological safety change, and also has assessed the ecological footprint demands of 10,000 yuan GDE The results of this study are as follows: (1) the ecological carrying capacity in northern Shaanxi shows a decreasing trend, the difference of reducing range is the fastest; (2) the ecological footprint appears an increasing trend; (3) ecological pressure index rose to 0.91 from 0.44 during 1986-2002 on the Loess Plateau of northern Shaanxi with an increase of 47%; and (4) the ecological security in the study area is in a critical state, and the ecological oressure index has been increasing rapidlv.展开更多
How to comprehensively consider the power flow constraints and various stability constraints in a series of power system optimization problems without affecting the calculation speed is always a problem.The computatio...How to comprehensively consider the power flow constraints and various stability constraints in a series of power system optimization problems without affecting the calculation speed is always a problem.The computational burden of probabilistic security assessment is even more unimaginable.In order to solve such problems,a security region(SR)methodology is proposed,which is a brand-new methodology developed on the basis of the classical point-wise method.Tianjin University has been studying the SR methodology since the 1980s,and has achieved a series of original breakthroughs that are described in this paper.The integrated SR introduced in this paper is mainly defined in the power injection space,and includes SRs to ensure steady-state security,transient stability,static voltage stability,and smalldisturbance stability.These SRs are uniquely determined for a given network topology(as well as location and clearing process for transient faults)and given system component parameters,and are irrelevant to operation states.This paper presents 11 facts and related remarks to introduce the basic concepts,composition,dynamics nature,and topological and geometric characteristics of SRs.It also provides a practical mathematical description of SR boundaries and fast calculation methods to determine them in a concise and systematic way.Thus,this article provides support for the systematic understanding,future research,and applications of SRs.The most critical finding on the topological and geometric characteristics of SRs is that,within the scope of engineering concern,the practical boundaries of SRs in the power injection space can be approximated by one or a few hyperplanes.Based on this finding,the calculation time for power system probabilistic security assessment(i.e.,risk analysis)and power system optimization with security constraints can be decreased by orders of magnitude.展开更多
A new transient stability margin is proposed based on a new expression of dynamic security region (DSR) which is developed from the existing expression of DSR. Applications of the DSR based transient stability margin ...A new transient stability margin is proposed based on a new expression of dynamic security region (DSR) which is developed from the existing expression of DSR. Applications of the DSR based transient stability margin to contingency ranking and screening are discussed. Simulations in the 10-machine 39-bus New England system are performed to show the effectiveness of the proposed DSR based tran-sient stability margin.展开更多
The paper presents a practical dynamic security region (PDSR) based dynamic security risk assessment and optimization model for power transmission system. The cost of comprehensive security control and the influence o...The paper presents a practical dynamic security region (PDSR) based dynamic security risk assessment and optimization model for power transmission system. The cost of comprehensive security control and the influence of uncertainties of power injections are considered in the model of dynamic security risk assessment. The transient stability constraints and uncertainties of power injections can be considered easily by PDSR in form of hyper-box. A method to define and classify contingency set is presented, and a risk control optimization model is given which takes total dynamic insecurity risk as the objective function for a dominant con-tingency set. An optimal solution of dynamic insecurity risk is obtained by opti-mizing preventive and emergency control cost and contingency set decomposition. The effectiveness of this model has been proved by test results on the New Eng-land 10-genarator 39-bus system.展开更多
This paper develops a novel model and an algorithm of security region based real and reactive power pricing of power systems.In the proposed model,the reactive power production cost is represented as the opportunity c...This paper develops a novel model and an algorithm of security region based real and reactive power pricing of power systems.In the proposed model,the reactive power production cost is represented as the opportunity cost.The static voltage stability region in the cut set power space(CVSR) and the practical dynamic security region(PDSR) in the injection power space are used to represent the constraints of voltage stability and transient stability,so that the consideration of this kind of constraints in the optimization becomes very easy.In the proposed algorithm,a decoupled optimization and iteration method of active power production cost and reactive power production cost is suggested.According to the K-T optimality conditions,the prices of active power and reactive power,and the different components corresponding to the concerned security constraints are derived.The components of spot prices can reflect the influence of different node power injections on each kind of security constraints,so that through the node price all of the participants in power market can be stimulated to take an active part in maintaining the system security.An illustrative example on the New England 10-genetator 39-bus System is used to demonstrate the proposed method.展开更多
Determining security/stability boundaries is a common and critical means of preventing cascading failures induced by voltage-related issues,which represents one of the major challenges in bulk power systems.However,tr...Determining security/stability boundaries is a common and critical means of preventing cascading failures induced by voltage-related issues,which represents one of the major challenges in bulk power systems.However,traditional approaches suffer from conservative issues and heavy computational burdens.To address these challenges,the concept of an autonomous-synergic voltage security region(AS-VSR)and the corresponding dynamic constraint coefficient pruning(DCCP)computation method,which fully consider the volt/var characteristics of bulk power systems,are proposed in this letter.Both linearized and nonlinearized robust optimization problems are introduced to obtain accurate results.The computational accuracy,time cost,and advantages of autonomous-synergic control are observed in the simulation results.展开更多
针对电力系统安全性问题特性,提出一种基于动态安全域的安全概率评估模型。模型核心是不安全概率指标,并通过该指标来表征各电力元件以及整个电力系统的安全性状况。概率方法的引入,使得模型不仅计及系统中各种主要的不确定性因素,而且...针对电力系统安全性问题特性,提出一种基于动态安全域的安全概率评估模型。模型核心是不安全概率指标,并通过该指标来表征各电力元件以及整个电力系统的安全性状况。概率方法的引入,使得模型不仅计及系统中各种主要的不确定性因素,而且对系统的安全状况进行了定量的描述。动态安全域理论大大降低了安全概率评估的计算量,使得该模型具有实用性。评估结果可以用于指导运行人员在安全控制中制定正确的决策。用新英格兰10机39节点系统(New England 10-generator 39-bussystem)对该模型做了验证。展开更多
基金Supported by National Natural Science Foundation of China (No.50595413)Special Fund of the National Fundamental Research of China(No.2004CB217904)+4 种基金US EPRI under Agreement EP-P29464/C9966Foundation for the Author of National Excellent Doctoral Disserta-tion (No.200439)Key Project of Ministry of Education of China(No.105047)Program for New Century Excellent Talents in University,Fok Ying Tung Education Foundation (No.104019)Innovation Fund of Tianjin Municipal (2006-09)
文摘The transient critical boundary of dynamic security region (DSR) can be approximated by a few hyper planes correlated with instability separation modes. A method to fast predict instability separation modes is proposed for DSR calculation in power injection space. The method identifies coherent generation groups by the developed K-medoids algorithm, taking a similarity matrix derived from the reachability Grammian as the index. As an experimental result, reachability Grammian matrices under local injections are approximately invariant. It indicates that the generator coherency identifications are nearly consistent for different injections. Then instability separation modes can be predicted at the normal operating point, while average initial acceleration is considered as the measure of the critical generator group to amend the error. Moreover, based on these predicted instability separation modes, a critical point search strategy for DSR calculation is illustrated in the reduced injection space of the critical generators. The proposed method was evaluated using New England Test System, and the computation accuracy and speed in determining the practical DSR were improved.
基金National Natural Science Foundation of China, No.40371003 Ministry of Education of China, No.01158 Master Research Project of Shaanxi Normal University
文摘Using the theory and method of the ecological footprint, and combining the changes of regional land use, resource environment, population, society and economy, this paper calculated the ecological footprint, ecological carrying capacity and ecological surplus/loss in 1986-2002 on the Loess Plateau in northern Shaanxi Province. What is more, this paper has put forward the concept of ecological pressure index, set up ecological pressure index models, and ecological security grading systems, and the prediction models of different ecological footprints, ecological carrying capacity, ecological surplus and ecological safety change, and also has assessed the ecological footprint demands of 10,000 yuan GDE The results of this study are as follows: (1) the ecological carrying capacity in northern Shaanxi shows a decreasing trend, the difference of reducing range is the fastest; (2) the ecological footprint appears an increasing trend; (3) ecological pressure index rose to 0.91 from 0.44 during 1986-2002 on the Loess Plateau of northern Shaanxi with an increase of 47%; and (4) the ecological security in the study area is in a critical state, and the ecological oressure index has been increasing rapidlv.
文摘How to comprehensively consider the power flow constraints and various stability constraints in a series of power system optimization problems without affecting the calculation speed is always a problem.The computational burden of probabilistic security assessment is even more unimaginable.In order to solve such problems,a security region(SR)methodology is proposed,which is a brand-new methodology developed on the basis of the classical point-wise method.Tianjin University has been studying the SR methodology since the 1980s,and has achieved a series of original breakthroughs that are described in this paper.The integrated SR introduced in this paper is mainly defined in the power injection space,and includes SRs to ensure steady-state security,transient stability,static voltage stability,and smalldisturbance stability.These SRs are uniquely determined for a given network topology(as well as location and clearing process for transient faults)and given system component parameters,and are irrelevant to operation states.This paper presents 11 facts and related remarks to introduce the basic concepts,composition,dynamics nature,and topological and geometric characteristics of SRs.It also provides a practical mathematical description of SR boundaries and fast calculation methods to determine them in a concise and systematic way.Thus,this article provides support for the systematic understanding,future research,and applications of SRs.The most critical finding on the topological and geometric characteristics of SRs is that,within the scope of engineering concern,the practical boundaries of SRs in the power injection space can be approximated by one or a few hyperplanes.Based on this finding,the calculation time for power system probabilistic security assessment(i.e.,risk analysis)and power system optimization with security constraints can be decreased by orders of magnitude.
基金Supported by Chinese National Basic Research Program (Grant No. 2004CB217900)the National Natural Science Foundation of China (Grant Nos. 50525721, 50595411, 50707035) China Postdoctoral Science Foundation (Grant No. 20060400518)
文摘A new transient stability margin is proposed based on a new expression of dynamic security region (DSR) which is developed from the existing expression of DSR. Applications of the DSR based transient stability margin to contingency ranking and screening are discussed. Simulations in the 10-machine 39-bus New England system are performed to show the effectiveness of the proposed DSR based tran-sient stability margin.
基金Supported by the key research of the National Natural Science Foundation of China (Grant No. 50595413) The National Basic Research Program of China (973 Program) (Grant No. 2004CB217904)
文摘The paper presents a practical dynamic security region (PDSR) based dynamic security risk assessment and optimization model for power transmission system. The cost of comprehensive security control and the influence of uncertainties of power injections are considered in the model of dynamic security risk assessment. The transient stability constraints and uncertainties of power injections can be considered easily by PDSR in form of hyper-box. A method to define and classify contingency set is presented, and a risk control optimization model is given which takes total dynamic insecurity risk as the objective function for a dominant con-tingency set. An optimal solution of dynamic insecurity risk is obtained by opti-mizing preventive and emergency control cost and contingency set decomposition. The effectiveness of this model has been proved by test results on the New Eng-land 10-genarator 39-bus system.
基金the key research project of the National Natural Science Foundation of China(Grant No.50595413)
文摘This paper develops a novel model and an algorithm of security region based real and reactive power pricing of power systems.In the proposed model,the reactive power production cost is represented as the opportunity cost.The static voltage stability region in the cut set power space(CVSR) and the practical dynamic security region(PDSR) in the injection power space are used to represent the constraints of voltage stability and transient stability,so that the consideration of this kind of constraints in the optimization becomes very easy.In the proposed algorithm,a decoupled optimization and iteration method of active power production cost and reactive power production cost is suggested.According to the K-T optimality conditions,the prices of active power and reactive power,and the different components corresponding to the concerned security constraints are derived.The components of spot prices can reflect the influence of different node power injections on each kind of security constraints,so that through the node price all of the participants in power market can be stimulated to take an active part in maintaining the system security.An illustrative example on the New England 10-genetator 39-bus System is used to demonstrate the proposed method.
基金supported in part by the National Natural Science Foundation of China (No.52007017)Fundamental Research Funds for the Central Universities (No.2020CDJQY-A027)。
文摘Determining security/stability boundaries is a common and critical means of preventing cascading failures induced by voltage-related issues,which represents one of the major challenges in bulk power systems.However,traditional approaches suffer from conservative issues and heavy computational burdens.To address these challenges,the concept of an autonomous-synergic voltage security region(AS-VSR)and the corresponding dynamic constraint coefficient pruning(DCCP)computation method,which fully consider the volt/var characteristics of bulk power systems,are proposed in this letter.Both linearized and nonlinearized robust optimization problems are introduced to obtain accurate results.The computational accuracy,time cost,and advantages of autonomous-synergic control are observed in the simulation results.
文摘针对电力系统安全性问题特性,提出一种基于动态安全域的安全概率评估模型。模型核心是不安全概率指标,并通过该指标来表征各电力元件以及整个电力系统的安全性状况。概率方法的引入,使得模型不仅计及系统中各种主要的不确定性因素,而且对系统的安全状况进行了定量的描述。动态安全域理论大大降低了安全概率评估的计算量,使得该模型具有实用性。评估结果可以用于指导运行人员在安全控制中制定正确的决策。用新英格兰10机39节点系统(New England 10-generator 39-bussystem)对该模型做了验证。