期刊文献+
共找到3,114篇文章
< 1 2 156 >
每页显示 20 50 100
Band structures of strained kagome lattices
1
作者 徐露婷 杨帆 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期456-463,共8页
Materials with kagome lattices have attracted significant research attention due to their nontrivial features in energy bands.We theoretically investigate the evolution of electronic band structures of kagome lattices... Materials with kagome lattices have attracted significant research attention due to their nontrivial features in energy bands.We theoretically investigate the evolution of electronic band structures of kagome lattices in response to uniaxial strain using both a tight-binding model and an antidot model based on a periodic muffin-tin potential.It is found that the Dirac points move with applied strain.Furthermore,the flat band of unstrained kagome lattices is found to develop into a highly anisotropic shape under a stretching strain along y direction,forming a partially flat band with a region dispersionless along ky direction while dispersive along kx direction.Our results shed light on the possibility of engineering the electronic band structures of kagome materials by mechanical strain. 展开更多
关键词 kagome lattice STRAIN band structure engineering
下载PDF
Reanalysis of energy band structure in the type-II quantum wells
2
作者 李欣欣 邓震 +4 位作者 江洋 杜春花 贾海强 王文新 陈弘 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期75-78,共4页
Band structure analysis holds significant importance for understanding the optoelectronic characteristics of semiconductor structures and exploring their potential applications in practice. For quantum well structures... Band structure analysis holds significant importance for understanding the optoelectronic characteristics of semiconductor structures and exploring their potential applications in practice. For quantum well structures, the energy of carriers in the well splits into discrete energy levels due to the confinement of barriers in the growth direction. However, the discrete energy levels obtained at a fixed wave vector cannot accurately reflect the actual energy band structure. In this work, the band structure of the type-II quantum wells is reanalyzed. When the wave vectors of the entire Brillouin region(corresponding to the growth direction) are taken into account, the quantized energy levels of the carriers in the well are replaced by subbands with certain energy distributions. This new understanding of the energy bands of low-dimensional structures not only helps us to have a deeper cognition of the structure, but also may overturn many viewpoints in traditional band theories and serve as supplementary to the band theory of low-dimensional systems. 展开更多
关键词 energy band structure type-II quantum wells low-dimensional semiconductors
下载PDF
Quantum confinement of carriers in the type-I quantum wells structure
3
作者 Xinxin Li Zhen Deng +4 位作者 Yang Jiang Chunhua Du Haiqiang Jia Wenxin Wang Hong Chen 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期553-558,共6页
Quantum confinement is recognized to be an inherent property in low-dimensional structures.Traditionally,it is believed that the carriers trapped within the well cannot escape due to the discrete energy levels.However... Quantum confinement is recognized to be an inherent property in low-dimensional structures.Traditionally,it is believed that the carriers trapped within the well cannot escape due to the discrete energy levels.However,our previous research has revealed efficient carrier escape in low-dimensional structures,contradicting this conventional understanding.In this study,we review the energy band structure of quantum wells along the growth direction considering it as a superposition of the bulk material dispersion and quantization energy dispersion resulting from the quantum confinement across the whole Brillouin zone.By accounting for all wave vectors,we obtain a certain distribution of carrier energy at each quantized energy level,giving rise to the energy subbands.These results enable carriers to escape from the well under the influence of an electric field.Additionally,we have compiled a comprehensive summary of various energy band scenarios in quantum well structures relevant to carrier transport.Such a new interpretation holds significant value in deepening our comprehension of low-dimensional energy bands,discovering new physical phenomena,and designing novel devices with superior performance. 展开更多
关键词 energy band QUANTUM confinement type-I QUANTUM WELLS LOW-DIMENSIONAL structures
下载PDF
Optimizing band structure of CoP nanoparticles via rich-defect carbon shell toward bifunctional electrocatalysts for overall water splitting 被引量:5
4
作者 Juncheng Wu Zhe‐Fan Wang +7 位作者 Taotao Guan Guoli Zhang Juan Zhang Jie Han Shengqin Guan Ning Wang Jianlong Wang Kaixi Li 《Carbon Energy》 SCIE CSCD 2023年第3期112-125,共14页
Transition-metal phosphides(TMPs)with high catalytic activity are widely used in the design of electrodes for water splitting.However,a major challenge is how to achieve the trade-off between activity and stability of... Transition-metal phosphides(TMPs)with high catalytic activity are widely used in the design of electrodes for water splitting.However,a major challenge is how to achieve the trade-off between activity and stability of TMPs.Herein,a novel method for synthesizing CoP nanoparticles encapsu-lated in a rich-defect carbon shell(CoP/DCS)is developed through the self-assembly of modified polycyclic aromatic molecules.The graft and removal of high-activity C-N bonds of aromatic molecules render the controllable design of crystallite defects of carbon shell.The density functional theory calculation indicates that the carbon defects with unpaired electrons could effectively tailor the band structure of CoP.Benefiting from the improved activity and corrosion resistance,the CoP/DCS delivers outstanding difunctional hydrogen evolution reaction(88 mV)and oxygen evolution reaction(251 mV)performances at 10 mA cm^(−2)current density.Furthermore,the coupled water electrolyzer with CoP/DCS as both the cathode and anode presents ultralow cell voltages of 1.49 V to achieve 10 mA cm^(−2)with long-time stability.This strategy to improve TMPs electrocatalyst with rich-DCS and heterogeneous structure will inspire the design of other transition metal compound electrocatalysts for water splitting. 展开更多
关键词 band structure bifunctional electrocatalysts CoP nanoparticles overall water splitting rich‐defect carbon
下载PDF
Banding structure formation during directional solidification of Pb-Bi peritectic alloys 被引量:1
5
作者 胡小武 李双明 +1 位作者 艾凡荣 闫洪 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第9期2131-2138,共8页
Directional solidification experiments on Pb-Bi peritectic alloys were carried out at very low growth rate (v=0.5 μm/s) and high temperature gradient (G=35 K/mm) in an improved Bridgman furnace. The banding struc... Directional solidification experiments on Pb-Bi peritectic alloys were carried out at very low growth rate (v=0.5 μm/s) and high temperature gradient (G=35 K/mm) in an improved Bridgman furnace. The banding structures were observed in both hypoperitectic and hyperperitectic compositions (Pb-xBi, x=26%, 28%, 30% and 34%). Tree-like primary α phase in the center of the sample surrounded by the peritectic β phase matrix was also observed, resulting from the melt convection. The banding microstructure, however, is found to be transient after the tree-like structure and only the peritectic phase forms after a few bands. Composition variations in the banding structure are measured to determine the nucleation undercooling for both α and β phases. In a finite length sample, convection is shown to lead only to the transient formation of bands. In this transient banding regime, only a few bands with a variable width are formed, and this transient banding process can occur over a wide range of compositions inside the two-phase peritectic region. 展开更多
关键词 directional solidification SEGREGATION Bridgman technique Pb-Bi alloys banding structure
下载PDF
Three-dimensional simulation of a Ka-band relativistic Cherenkov source with metal photonic-band-gap structures 被引量:9
6
作者 高喜 杨梓强 +4 位作者 亓丽梅 兰峰 史宗君 李大治 梁正 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第6期2452-2458,共7页
This paper presents a three-dimensional particle-in-cell (PIC) simulation of a Ka-band relativistic Cherenkov source with a slow wave structure (SWS) consisting of metal photonic band gap (PBG) structures. In th... This paper presents a three-dimensional particle-in-cell (PIC) simulation of a Ka-band relativistic Cherenkov source with a slow wave structure (SWS) consisting of metal photonic band gap (PBG) structures. In the simulation, a perfect match layer boundary is employed to absorb passing band modes supported by the PBG lattice with an artificial metal boundary. The simulated axial field distributions in the cross section and surface of the SWS demonstrate that the device operates in the vicinity of the π point of a TM01-1ike mode. The Fourier transformation spectra of the axial fields as functions of time and space show that only a single frequency appears at 36.27 GHz, which is in good agreement with that of the intersection of the dispersion curve with the slow space charge wave generated on the beam. The simulation results demonstrate that the SWS has good mode selectivity. 展开更多
关键词 Cherenkov source slow wave structure photonic band gap three-dimensional particlein-cell
下载PDF
Synthesis,Crystal Structure and Band Structure of Sm_3In_5 被引量:5
7
作者 岳呈阳 雷晓武 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2011年第3期384-389,共6页
A new intermetallic compound, Sm3In5, has been synthesized by solid-state reaction of the corresponding pure elements in a welded niobium tube at high temperature. Its crystal structure was established by single-cryst... A new intermetallic compound, Sm3In5, has been synthesized by solid-state reaction of the corresponding pure elements in a welded niobium tube at high temperature. Its crystal structure was established by single-crystal X-ray diffraction. Sm3In5 crystallizes in orthorhombic, space group Cmcm with a = 10.0137(8), b = 8.1211(7), c = 10.3858(8) A, V = 844.60(1) A^3, Z = 4, Mr = 1025.15, Dc = 8.062 g/cm^3, μ = 33.791 mm^-1, F(000) = 1724, the final R = 0.0346 and wR = 0.0775 for 533 observed reflections with I 〉 2σ(I). The structure of Sm3In5 belongs to the modified Pu3Pd5 type. It is isostructural with La3In5 and β-Y3In5, containing one-dimensional (1D) [In5] cluster chains along the c-axis, which are weakly interconnected via In-In bonds (3.345A) to form a three-dimensional (3D) structure. The samarium cations are located at the voids between the 1D [In5] cluster chains. Band structure calculations based on Density Function Theory (DFT) method indicate that Sm3In5 is metallic. 展开更多
关键词 INTERMETALLIC INDIDES crystal structure band structure calculation
下载PDF
Synthesis, Crystal Structure and Band Structure of Eu_3Sn_5 with Arachno-type Zintl Anions 被引量:4
8
作者 雷晓武 毛江高 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 北大核心 2007年第12期1403-1408,共6页
A new polar intermetallic compound, Eu3Sn5, has been synthesized by solid-state reaction of the corresponding pure elements in a stoicbiometric ratio in a welded tantalum tube at high temperature. Its crystal structur... A new polar intermetallic compound, Eu3Sn5, has been synthesized by solid-state reaction of the corresponding pure elements in a stoicbiometric ratio in a welded tantalum tube at high temperature. Its crystal structure was established by single-crystal X-ray diffraction. EuaSn5 crystallizes in orthorhombic, space group Cmcm with a = 10.466(11), b = 8,445(8), c = 10.662(12)/k, V = 942.4(17)A^3, Z = 4, Mr = 1049.33, De= 7.396 g/cm^3, ,μ = 32.578 mm^-1, F(000) = 1756, the final R = 0.0236 and wR = 0.0472 for 535 observed reflections with I 〉 2σ(I). Its structure belongs to the modified Pu3Pd5 type. It is isostructural with SraSn5 and Ba3Sn5, featuring [Sn5] square pyramidal clusters described as “arachno” according to the Wade-Mingos electron counting rules. The europium cations are located at the voids between the square pyramidal clusters. Results of the extended Htickel band structure calculations indicate that Eu3Sn5 is metallic. 展开更多
关键词 INTERMETALLIC STANNIDE crystal structure band structure
下载PDF
Impact of Oxygen Vacancy on Band Structure Engineering of n-p Codoped Anatase TiO2
9
作者 孟强强 王加军 +1 位作者 黄静 李群祥 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2015年第2期155-160,I0001,共7页
Doping with various impurities is an effective approach to improve the photoelectrochemical properties of TiO2. Here, we explore the effect of oxygen vacancy on geometric and elec- tronic properties of compensated (i... Doping with various impurities is an effective approach to improve the photoelectrochemical properties of TiO2. Here, we explore the effect of oxygen vacancy on geometric and elec- tronic properties of compensated (i.e. V-N and Cr-C) and non-compensated (i.e. V-C and Cr-N) codoped anatase TiO2 by performing extensive density functional theory calculations. Theoretical results show that oxygen vacancy prefers to the neighboring site of metal dopant (i.e. V or Cr atom). After introduction of oxygen vacancy, the unoccupied impurity bands located within band gap of these codoped TiO2 will be filled with electrons, and the posi- tion of conduction band offset does not change obviously, which result in the reduction of photoinduced carrier recombination and the good performance for hydrogen production via water splitting. Moreover, we find that oxygen vacancy is easily introduced in V-N codoped TiO2 under O-poor condition. These theoretical insights are helpful for designing codoped TiO2 with high photoelectrochemical performance. 展开更多
关键词 Oxygen vacancy band structure engineering n-p codoped Anatase TiO2
下载PDF
Band structure engineering in metal halide perovskite nanostructures for optoelectronic applications 被引量:5
10
作者 Qingdong Ou Xiaozhi Bao +5 位作者 Yinan Zhang Huaiyu Shao Guichuan Xing Xiangping Li Liyang Shao Qiaoliang Bao 《Nano Materials Science》 CAS 2019年第4期268-287,共20页
Metal halide perovskite nanostructures have emerged as low-dimensional semiconductors of great significance in many fields such as photovoltaics,photonics,and optoelectronics.Extensive efforts on the controlled synthe... Metal halide perovskite nanostructures have emerged as low-dimensional semiconductors of great significance in many fields such as photovoltaics,photonics,and optoelectronics.Extensive efforts on the controlled synthesis of perovskite nanostructures have been made towards potential device applications.The engineering of their band structures holds great promise in the rational tuning of the electronic and optical properties of perovskite nanostructures,which is one of the keys to achieving efficient and multifunctional optoelectronic devices.In this article,we summarize recent advances in band structure engineering of perovskite nanostructures.A survey of bandgap engineering of nanostructured perovskites is firstly presented from the aspects of dimensionality tailoring,compositional substitution,phase segregation and transition,as well as strain and pressure stimuli.The strategies of electronic doping are then reviewed,including defect-induced self-doping,inorganic or organic molecules-based chemical doping,and modification by metal ions or nanostructures.Based on the bandgap engineering and electronic doping,discussions on engineering energy band alignments in perovskite nanostructures are provided for building high-performance perovskite p-n junctions and heterostructures.At last,we provide our perspectives in engineering band structures of perovskite nanostructures towards future low-energy optoelectronics technologies. 展开更多
关键词 band structure engineering Perovskite nanostructures Optoelectronic applications Doping Heterostructures
下载PDF
Band structure calculation of scalar waves in two-dimensional phononic crystals based on generalized multipole technique 被引量:4
11
作者 史志杰 汪越胜 张传增 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第9期1123-1144,共22页
A multiple monopole (or multipole) method based on the generalized mul- tipole technique (GMT) is proposed to calculate the band structures of scalar waves in two-dimensional phononic crystals which are composed o... A multiple monopole (or multipole) method based on the generalized mul- tipole technique (GMT) is proposed to calculate the band structures of scalar waves in two-dimensional phononic crystals which are composed of arbitrarily shaped cylinders embedded in a host medium. In order to find the eigenvalues of the problem, besides the sources used to expand the wave field, an extra monopole source is introduced which acts as the external excitation. By varying the frequency of the excitation, the eigenvalues can be localized as the extreme points of an appropriately chosen function. By sweeping the frequency range of interest and sweeping the boundary of the irreducible first Brillouin zone, the band structure is obtained. Some numerical examples are presented to validate the proposed method. 展开更多
关键词 phononic crystal generalized multipole technique multiple multipolemethod multiple monopole method band structure eigenvalue problem
下载PDF
Syntheses,Structures and Band Gaps of KLnSiS_4(Ln=Sm,Yb) 被引量:3
12
作者 郭胜平 曾卉一 +3 位作者 郭国聪 邹建平 徐刚 黄锦顺 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 北大核心 2008年第12期1543-1548,共6页
Two new quaternary sulfides, KSmSiS4 (1) and KYbSiS4 (2), have been synthesized by high-temperature solid-state reaction. Single,crystal X-ray diffraction analyses indicate that both compounds crystallize in the s... Two new quaternary sulfides, KSmSiS4 (1) and KYbSiS4 (2), have been synthesized by high-temperature solid-state reaction. Single,crystal X-ray diffraction analyses indicate that both compounds crystallize in the space group P21/m, and the crystal data are as follows: a = 6.426(11), b = 6.582(11), c = 8.602(15)A, β= 107.90(13)°, Z = 2, V= 346.2(10) A^3, Dc = 3.317 g/cm^3, F(000) = 318,μ(MoKα) = 10.334 mm^-1, the final R = 0.0559 and wR = 0.1370 for 1; and α= 6.3244(10), b = 6.5552(10), c = 8.5701(15)A, β= 108.001(13)°, Z = 2, V = 337.91(9) A^3, De= 3.621 g/cm^3, F(000) = 334, μ(MoKα) = 15.737 mm^-1, the final R = 0.0422 and wR = 0.0960 for 2. The KLnSiS4 (Ln = Sm, Yb) structure consists of corrugated ∞^2 [LnSiS4]^- layers which are formed by edge-sharing LnS8 bicapped trigonal prisms and SiS4 tetrahedra. The K^+ cations are located in the cavities defined by S2 anions between the ∞^2[LnSiS4]^- layers. Band-gap analyses show that compounds 1 and 2 are semiconductors with optical band-gaps of 2.40 and 2.34 eV, respectively. 展开更多
关键词 CHALCOGENIDE RARE-EARTH solid-state reaction crystal structure band gap
下载PDF
Band structures of TiO_2 doped with N, C and B 被引量:6
13
作者 XU Tian-hua SONG Chen-lu LIU Yong HAN Gao-rong 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2006年第4期299-303,共5页
This study on the band structures and charge densities of nitrogen (N)-, carbon (C)- and boron (B)-doped titanium dioxide (TiO2) by first-principles simulation with the CASTEP code (Segall et al., 2002) showed that th... This study on the band structures and charge densities of nitrogen (N)-, carbon (C)- and boron (B)-doped titanium dioxide (TiO2) by first-principles simulation with the CASTEP code (Segall et al., 2002) showed that the three 2p bands of im-purity atom are located above the valence-band maximum and below the Ti 3d bands, and that along with the decreasing of im-purity atomic number, the fluctuations become more intensive. We cannot observe obvious band-gap narrowing in our result. Therefore, the cause of absorption in visible light might be the isolated impurity atom 2p states in band-gap rather than the band-gap narrowing. 展开更多
关键词 CASTEP code Titanium dioxide band structure Charge density
下载PDF
Synthesis and Crystal and Band Structures of YbCu_6In_6 with 3D Framework 被引量:2
14
作者 雷晓武 岳呈阳 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2012年第3期389-395,共7页
A new intermetallic compound,YbCu6In6,has been synthesized by solid-state reaction of the corresponding pure elements in a welded tantalum tube at high temperature.Its crystal structure was established by single-cryst... A new intermetallic compound,YbCu6In6,has been synthesized by solid-state reaction of the corresponding pure elements in a welded tantalum tube at high temperature.Its crystal structure was established by single-crystal X-ray diffraction.YbCu6In6 crystallizes in tetragonal space group I4/mmm with a = 9.2283(5),c = 5.4015(4),V = 460.00(5) 3,Z = 2,Mr = 1243.20,Dc = 8.976 g/cm3,μ = 38.243 mm-1,F(000) = 1076,and the final R = 0.0258 and wR = 0.0602 for 173 observed reflections with I 〉 2σ(I).The structure of YbCu6In6 belongs to the ThMn12 type.It is isostructural with RECu6In6(RE = Y,Ce,Pr,Nd,Gd,Tb,Dy),containing one-dimensional(1D) [Cu10In6] cluster chain along the c axis,which is interconnected via sharing the Cu(1) atoms to form a three-dimensional(3D) [Cu6In6] framework with Yb atoms encapsulated in the 1D tunnels along the c axis.Band structure calculations based on Density Functional Theory(DFT) method indicate that YbCu6In6 is metallic. 展开更多
关键词 INTERMETALLIC INDIDES crystal structure band structure calculation
下载PDF
Band structures of transverse waves in nanoscale multilayered phononic crystals with nonlocal interface imperfections by using the radial basis function method 被引量:2
15
作者 Zhizhong Yan Chunqiu Wei Chuanzeng Zhang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2017年第2期415-428,共14页
A radial basis function collocation method based on the nonlocal elastic continuum theory is developed to compute the band structures of nanoscale multilayered phononic crystals. The effects of nonlocal imperfect inte... A radial basis function collocation method based on the nonlocal elastic continuum theory is developed to compute the band structures of nanoscale multilayered phononic crystals. The effects of nonlocal imperfect interfaces on band structures of transverse waves propagating obliquely or vertically in the system are studied. The correctness of the present method is verified by comparing the numerical results with those obtained by applying the transfer matrix method in the case of nonlocal perfect interface. Furthermore, the influences of the nanoscale size, the impedance ratio and the incident angle on the cut-off frequency and band structures are investigated and discussed in detail. Numerical results show that the nonlocal interface imperfections have significant effects on the band structures in the macroscopic and microscopic scale. 展开更多
关键词 Radial basis function Phononic crystal NANOSCALE band structure Nonlocal imperfect interface
下载PDF
Effect of Cr/Mn segregation on pearlite–martensite banded structure of high carbon bearing steel 被引量:5
16
作者 Yun-long Wang Yin-li Chen Wei Yu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第4期665-675,共11页
The effect of Cr/Mn segregation on the abnormal banded structure of high carbon bearing steel was studied by reheating and hot rolling.With the use of an optical microscope, scanning electron microscope, transmission ... The effect of Cr/Mn segregation on the abnormal banded structure of high carbon bearing steel was studied by reheating and hot rolling.With the use of an optical microscope, scanning electron microscope, transmission electron microscope, and electron probe microanalyzer, the segregation characteristics of alloying elements in cast billet and their relationship with hot-rolled plate banded structure were revealed.The formation causes of an abnormal banded structure and the elimination methods were analyzed.Results indicate the serious positive segregation of C, Cr, and Mn alloy elements in the billet.Even distribution of Cr/Mn elements could not be achieved after 10 h of heat preservation at 1200℃, and the spacing of the element aggregation area increased, but the segregation index of alloy elements decreased.Obvious alloying element segregation characteristics are present in the banded structure of the hot-rolled plate.This distinct white band is composed of martensitic phases.The formation of this abnormal pearlite–martensite banded structure is due to the interaction between the undercooled austenite transformation behavior of hot-rolled metal and the segregation of its alloying elements.Under the air cooling after rolling, controlling the segregation index of alloy elements can reduce or eliminate the abnormal banded structure. 展开更多
关键词 high carbon bearing steel elements segregation HOMOGENIZATION banded structure
下载PDF
Synthesis,Crystal Structure and Band Structure of Tb_3Co_4Sn_(13) 被引量:1
17
作者 雷晓武 岳呈阳 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2011年第6期805-810,共6页
A new intermetallic compound,Tb3Co4Sn13,has been synthesized by solid-state reaction of the corresponding pure elements in a welded tantalum tube at high temperature.Its crystal structure was established by single-cry... A new intermetallic compound,Tb3Co4Sn13,has been synthesized by solid-state reaction of the corresponding pure elements in a welded tantalum tube at high temperature.Its crystal structure was established by single-crystal X-ray diffraction.Tb3Co4Sn13 crystallizes in cubic,space group Pm3n(No.223) with a = 9.5072(2) ,V = 859.33(3) 3,Z = 2,Mr = 2255.45,Dc = 8.717 g/cm3,μ = 34.369 mm-1,F(000) = 1906,and the final R = 0.0140 and wR = 0.0312 for 199 observed reflections with I〉 2σ(I).The structure of Tb3Co4Sn13 belongs to the Yb3Rh4Sn13 type.It is isostructural with RE3Co4Sn13(RE = La,Ce),featuring a 3D [Co4Sn12] framework based on [CoSn6] trigonal prisms.The [CoSn6] trigonal prisms are interconnected via corner-sharing and Sn-Sn bonds to form a 3D [Co4Sn12] framework.The other Sn and Tb atoms are located in the spacers of the 3D framework.Band structure calculations indicate that Tb3Co4Sn13 is metallic. 展开更多
关键词 INTERMETALLIC STANNIDE crystal structure band structure calculation
下载PDF
Band Structures and Two-photon Absorption of ZnGeP_2 and AgGaS_2 Crystals 被引量:1
18
作者 程文旦 谢知 +3 位作者 吴东升 黄淑萍 王金云 张浩 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2010年第6期950-956,共7页
Band structure and bonding properties have been investigated in terms of periodic density functional theory(DFT) method,and two-photon absorption(TPA) spectra have been simulated by two-band model for ZnGeP2 and A... Band structure and bonding properties have been investigated in terms of periodic density functional theory(DFT) method,and two-photon absorption(TPA) spectra have been simulated by two-band model for ZnGeP2 and AgGaS2 crystals.It has been predicted that the AgGaS2 crystal has a wider window of nonlinear transmission,and the laser pumping energy larger than 1.02 and 1.35 eV will lead to deleterious TPA of higher nonlinear effect for ZnGeP2 and AgGaS2 crystals,respectively.Electron origin of TPA for them is also discussed. 展开更多
关键词 DFT band structure TPA electron transition
下载PDF
Study on Band Structure of YbB_6 and Analysis of Its Optical Conductivity Spectrum 被引量:1
19
作者 姜骏 卞江 黎乐民 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第6期654-664,共11页
The electronic structure of YbB6 crystal was studied by means of density functional (GGA + U) method. The calculations were performed by FLAPW method. The high accurate band structure was achieved. The correlation ... The electronic structure of YbB6 crystal was studied by means of density functional (GGA + U) method. The calculations were performed by FLAPW method. The high accurate band structure was achieved. The correlation between the feature of the band structure and the Yb-B6 bonding in YbB6 was analyzed. On this basis, some optical constants of YbB6 such as reflectivity, dielectric function, optical conductivity, and energy-loss function were calculated. The results are in good agreement with the experiments. The real part of the optical conductivity spectrum and the energy-loss function spectrum were analyzed in detail. The assignments of the spectra were carried out to correlate the spectral peaks with the interband electronic transitions, which justify the reasonable part of previous empirical assignments and renew the missed or incorrect ones. 展开更多
关键词 YbB6 band structure optical conductivity energy-loss function spectrum assignment rare earths
下载PDF
Photonic band structures of quadrangular multiconnected networks 被引量:1
20
作者 宋欢欢 杨湘波 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第7期313-321,共9页
By means of the network equation and generalized dimensionless Floquet-Bloch theorem, this paper investigates the properties of the band number and width for quadrangular multiconnected networks (QMNs) with a differ... By means of the network equation and generalized dimensionless Floquet-Bloch theorem, this paper investigates the properties of the band number and width for quadrangular multiconnected networks (QMNs) with a different number of connected waveguide segments (NCWSs) and various matching ratio of waveguide length (MRWL). It is found that all photonic bands are wide bands when the MRWL is integer. If the integer attribute of MRWL is broken, narrow bands will be created from the wide band near the centre of band structure. For two-segment-connected networks and three-segment-connected networks, it obtains a series of formulae of the band number and width. On the other hand, it proposes a so-called concept of two-segment-connected quantum subsystem and uses it to discuss the complexity of the band structures of QMNs. Based on these formulae, one can dominate the number, width and position of photonic bands within designed frequencies by adjusting the NCWS and MRWL. There would be potential applications for designing optical switches, optical narrow-band filters, dense wavelength-division-multiplexing devices and other correlative waveguide network devices. 展开更多
关键词 multiconnected network WAVEGUIDE photonic band structure
下载PDF
上一页 1 2 156 下一页 到第
使用帮助 返回顶部