We investigate a periodically driven Haldane model subjected to a two-stage driving scheme in the form of a step function.By using the Floquet theory,we obtain the topological phase diagram of the system.We also find ...We investigate a periodically driven Haldane model subjected to a two-stage driving scheme in the form of a step function.By using the Floquet theory,we obtain the topological phase diagram of the system.We also find that anomalous Floquet topological phases exist in the system.Focusing on examining the quench dynamics among topological phases,we analyze the site distribution of the 0-mode and p-mode edge states in long-period evolution after a quench.The results demonstrate that,under certain conditions,the site distribution of the 0-mode can be confined at the edge even in long-period evolution.Additionally,both the 0-mode and p-mode can recover and become confined at the edge in long-period evolution when the post-quench parameters(T,M_(2) /M_(1))in the phase diagram cross away from the phase boundary (M_(2)/ M_(1))=(6√3t2)/ M_(1)−1.Furthermore,we conclude that whether the edge state is confined at the edge in the long-period evolution after a quench depends on the similarity of the edge states before and after the quench.Our findings reveal some new characteristics of quench dynamics in a periodically driven system.展开更多
This paper presents a comprehensive framework for analyzing phase transitions in collective models such as theVicsek model under various noise types. The Vicsek model, focusing on understanding the collective behavior...This paper presents a comprehensive framework for analyzing phase transitions in collective models such as theVicsek model under various noise types. The Vicsek model, focusing on understanding the collective behaviors of socialanimals, is known due to its discontinuous phase transitions under vector noise. However, its behavior under scalar noiseremains less conclusive. Renowned for its efficacy in the analysis of complex systems under both equilibrium and nonequilibriumstates, the eigen microstate method is employed here for a quantitative examination of the phase transitions inthe Vicsek model under both vector and scalar noises. The study finds that the Vicsek model exhibits discontinuous phasetransitions regardless of noise type. Furthermore, the dichotomy method is utilized to identify the critical points for thesephase transitions. A significant finding is the observed increase in the critical point for discontinuous phase transitions withescalation of population density.展开更多
Fractional molecular field theory(FMFT)is a phenomenological theory that describes phase transitions in crystals with randomly distributed components,such as the relaxor-ferroelectrics and spin glasses.In order to ver...Fractional molecular field theory(FMFT)is a phenomenological theory that describes phase transitions in crystals with randomly distributed components,such as the relaxor-ferroelectrics and spin glasses.In order to verify the feasibility of this theory,this paper fits it to the Monte Carlo simulations of specific heat and susceptibility versus temperature of two-dimensional(2D)random-site Ising model(2D-RSIM).The results indicate that the FMFT deviates from the 2D-RSIM significantly.The main reason for the deviation is that the 2D-RSIM is a typical system of component random distribution,where the real order parameter is spatially heterogeneous and has no symmetry of space translation,but the basic assumption of FMFT means that the parameter is spatially uniform and has symmetry of space translation.展开更多
The two-component cold atom systems with anisotropic hopping amplitudes can be phenomenologically described by a two-dimensional Ising-XY coupled model with spatial anisotropy.At low temperatures,theoretical predictio...The two-component cold atom systems with anisotropic hopping amplitudes can be phenomenologically described by a two-dimensional Ising-XY coupled model with spatial anisotropy.At low temperatures,theoretical predictions[Phys.Rev.A 72053604(2005)]and[arXiv:0706.1609]indicate the existence of a topological ordered phase characterized by Ising and XY disorder but with 2XY ordering.However,due to ergodic difficulties faced by Monte Carlo methods at low temperatures,this topological phase has not been numerically explored.We propose a linear cluster updating Monte Carlo method,which flips spins without rejection in the anisotropy limit but does not change the energy.Using this scheme and conventional Monte Carlo methods,we succeed in revealing the nature of topological phases with half-vortices and domain walls.In the constructed global phase diagram,Ising and XY-type transitions are very close to each other and differ significantly from the schematic phase diagram reported earlier.We also propose and explore a wide range of quantities,including magnetism,superfluidity,specific heat,susceptibility,and even percolation susceptibility,and obtain consistent and reliable results.Furthermore,we observed first-order transitions characterized by common intersection points in magnetizations for different system sizes,as opposed to the conventional phase transition where Binder cumulants of various sizes share common intersections.The critical exponents of different types of phase transitions are reasonably fitted.The results are useful to help cold atom experiments explore the half-vortex topological phase.展开更多
The phase field method is playing an increasingly important role in understanding and predicting morphological evolution in materials and biological systems.Here,we develop a new analytical approach based on the bifur...The phase field method is playing an increasingly important role in understanding and predicting morphological evolution in materials and biological systems.Here,we develop a new analytical approach based on the bifurcation analysis to explore the mathematical solution structure of phase field models.Revealing such solution structures not only is of great mathematical interest but also may provide guidance to experimentally or computationally uncover new morphological evolution phenomena in materials undergoing electronic and structural phase transitions.To elucidate the idea,we apply this analytical approach to three representative phase field equations:the Allen-Cahn equation,the Cahn-Hilliard equation,and the Allen-Cahn-Ohta-Kawasaki system.The solution structures of these three phase field equations are also verified numerically by the homotopy continuation method.展开更多
We investigated the properties of the phase diagram of high-order susceptibilities,speed of sound,and polytropic index based on an extended Nambu-Jona-Lasinio model with an eight-quark scalar-vector interaction.Non-mo...We investigated the properties of the phase diagram of high-order susceptibilities,speed of sound,and polytropic index based on an extended Nambu-Jona-Lasinio model with an eight-quark scalar-vector interaction.Non-monotonic behavior was observed in all these quantities around the phase transition boundary,which also revealed the properties of the critical point.Further,this study indicated that the chiral phase transition boundary and critical point could vary depending on the scalarvector coupling constant G_(SV).At finite densities and temperatures,the negative G_(SV)term exhibited attractive interactions,which enhanced the critical point temperature and reduced the chemical potential.The G_(SV)term also affected the properties of the high-order susceptibilities,speed of sound,and polytropic index near the critical point.The non-monotonic(peak or dip)structures of these quantities shifted to a low baryon chemical potential(and high temperature)with a negative G_(SV).G_(SV)also changed the amplitude and range of the nonmonotonic regions.Therefore,the scalar-vector interaction was useful for locating the phase boundary and critical point in QCD phase diagram by comparing the experimental data.The study of the non-monotonic behavior of high-order susceptibilities,speed of sound,and polytropic index is of great interest,and further observations related to high-order susceptibilities,speed of sound,and polytropic index being found and applied to the search for critical points in heavy-ion collisions and the study of compact stars are eagerly awaited.展开更多
In contrast to conventional transformers, power electronic transformers, as an integral component of new energy power system, are often subjected to high-frequency and transient electrical stresses, leading to heighte...In contrast to conventional transformers, power electronic transformers, as an integral component of new energy power system, are often subjected to high-frequency and transient electrical stresses, leading to heightened concerns regarding insulation failures. Meanwhile, the underlying mechanism behind discharge breakdown failure and nanofiller enhancement under high-frequency electrical stress remains unclear. An electric-thermal coupled discharge breakdown phase field model was constructed to study the evolution of the breakdown path in polyimide nanocomposite insulation subjected to high-frequency stress. The investigation focused on analyzing the effect of various factors, including frequency, temperature, and nanofiller shape, on the breakdown path of Polyimide(PI) composites. Additionally, it elucidated the enhancement mechanism of nano-modified composite insulation at the mesoscopic scale. The results indicated that with increasing frequency and temperature, the discharge breakdown path demonstrates accelerated development, accompanied by a gradual dominance of Joule heat energy. This enhancement is attributed to the dispersed electric field distribution and the hindering effect of the nanosheets. The research findings offer a theoretical foundation and methodological framework to inform the optimal design and performance management of new insulating materials utilized in high-frequency power equipment.展开更多
A thermodynamic consistent phase field model is developed to describe the sintering process with multiphase powders. In this model, the interface region is assumed to be a mixture of different phases with the same che...A thermodynamic consistent phase field model is developed to describe the sintering process with multiphase powders. In this model, the interface region is assumed to be a mixture of different phases with the same chemical potential, but with different compositions. The interface diffusion and boundary diffusion are also considered in the model. As an example, the model is applied to the sintering process with Fe-Cu powders. The free energy of each phase is described by the well-developed thermodynamic models, together with the published optimized parameters. The microstructure and solute distribution during the sintering process can both be obtained quantitively.展开更多
The early precipitation process of Ni(75)Al(14)Mo(11) alloy was simulated by microscopic phase-field model at different temperatures.The microstructure of the alloy,the precipitation time of Llo structure and oc...The early precipitation process of Ni(75)Al(14)Mo(11) alloy was simulated by microscopic phase-field model at different temperatures.The microstructure of the alloy,the precipitation time of Llo structure and occupation probability of the three kinds of atoms were investigated.It is indicated that the non-stoichiometric Ll0(Ⅰ/Ⅱ) phases are found in the precipitation process.With the temperature increasing,the appearance time of Ll0 is brought forward.The Ll0(Ⅱ) structure always precipitates earlier than the Ll0(Ⅰ) structure.Compared with lower temperature,higher temperature brings the formation time of Ll0 phase forward and makes Ll0 phase have a higher order degree.But lower temperature shortens the process time of the Ll0 phase to the Ll2 phase.Al and Mo atoms tend to occupy γ site,Ni atom tends to occupy a and β sites.At the same temperature,Al atom has stronger occupation ability than Mo atom in the same site.Ni,Al and Mo collectively form the composited Ll2 structure.展开更多
Scanning electron microscopy and X-ray energy dispersive spectrum analysis show that the clusters of intermetallic AlFeSi particle are distributed on or near the aluminum foil stock surfaces heterogeneously. 3D finite...Scanning electron microscopy and X-ray energy dispersive spectrum analysis show that the clusters of intermetallic AlFeSi particle are distributed on or near the aluminum foil stock surfaces heterogeneously. 3D finite element modeling shows that these clusters of hard particles induce the fracture of the nano-scale lubricant oil film at first and further lead to severe deformation in the nearby aluminum foil substrate along the rolling direction. Consequently, the optical property in this region differs from that in the surroundings, resulting in surface defects.展开更多
Thixocasting requires manufacturing of billets with non-dendritic microstructure.Aluminum alloy A356 billets were produced by rheocasting in a mould placed inside a linear electromagnetic stirrer.Subsequent heat treat...Thixocasting requires manufacturing of billets with non-dendritic microstructure.Aluminum alloy A356 billets were produced by rheocasting in a mould placed inside a linear electromagnetic stirrer.Subsequent heat treatment was used to produce a transition from rosette to globular microstructure.The current and the duration of stirring were explored as control parameters.Simultaneous induction heating of the billet during stirring was quantified using experimentally determined thermal profiles.The effect of processing parameters on the dendrite fragmentation was discussed.Corresponding computational modeling of the process was performed using phase-field modeling of alloy solidification in order to gain insight into the process of morphological changes of a solid during this process.A non-isothermal alloy solidification model was used for simulations.The morphological evolution under such imposed thermal cycles was simulated and compared with experimentally determined one.Suitable scaling using the thermosolutal diffusion distances was used to overcome computational difficulties in quantitative comparison at system scale.The results were interpreted in the light of existing theories of microstructure refinement and globularisation.展开更多
Several methods representing the evolution of microstructure were introduced, which include the Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation, Internal State Variable (ISV) framework, Koistinen-Marburger (K-M) ...Several methods representing the evolution of microstructure were introduced, which include the Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation, Internal State Variable (ISV) framework, Koistinen-Marburger (K-M) equation, modified Magee's rule and phase field model, etc. By combining calculation of martensite transformation kinetics, considering the selection of parameters with the effect of austenite grain size (AGS), some suitable ways of obtaining better results have been proposed.展开更多
Single dendrite and multi-dendrite growth for Al-2 mol pct Si alloy during isothermal solidification are simulated by phase field method. In the case of single equiaxed dendrite growth, the secondary and the necking p...Single dendrite and multi-dendrite growth for Al-2 mol pct Si alloy during isothermal solidification are simulated by phase field method. In the case of single equiaxed dendrite growth, the secondary and the necking phenomenon can be observed. For multi-dendrite growth, there exists the competitive growth among the dendrites during solidification. As solidification proceeds, growing and coarsening of the primary arms occurs, together with the branching and coarsening of the secondary arms. When the diffusion fields of dendrite tips come into contact with those of the branches growing from the neighboring dendrites, the dendrites stop growing and being to ripen and thicken.展开更多
In this paper,a numerical investigation about the metal transfer of GMAW is investigated based on the phase field model.Be different of most published work,we take the thermocapillary effect and mixture energy into th...In this paper,a numerical investigation about the metal transfer of GMAW is investigated based on the phase field model.Be different of most published work,we take the thermocapillary effect and mixture energy into the process of phase transfer and interface change which is different from volume of fluid( VOF) method.We discretize the whole model with a continuous finite element method and we also apply a penalty formulation to the continuity condition enhancing the stability of the pressure.Metal transfer of GMAW with constant and pulse current is computed as numerical examples which agrees well with the data of high-speed photography.The result shows that the computing process of the phase field model is stability and it has a higher precision in predicting the diameter of droplet.展开更多
The relations of bulk modulus, shear modulus, Young's modulus and the Poisson's ratio with porosity of foam plastics are determined by a three phase spheroidal model commonly used in Composite Mechanics. The r...The relations of bulk modulus, shear modulus, Young's modulus and the Poisson's ratio with porosity of foam plastics are determined by a three phase spheroidal model commonly used in Composite Mechanics. The results are compared with those using differential scheme. It is shown that the material properties derived from the present model normally are larger than those obtained by differential scheme for foam plastics with identical porosity. The differences in shear moduli and Young's moduli obtained by the two methods are small but they are larger for bulk moduli of incompressible matrix and Poisson's ratios. The Young's moduli of high density foam plastics derived by the present model agree better with experimental ones.展开更多
A model has been established to simulate the realistic spatio-temporal microstructure evolution in recrystallization of a magnesium alloy using the phase field approach. A set of rules have been proposed to decide the...A model has been established to simulate the realistic spatio-temporal microstructure evolution in recrystallization of a magnesium alloy using the phase field approach. A set of rules have been proposed to decide the real physical value of all parameters in the model. The thermodynamic software THERMOCALC is applied to determine the local chemical free energy and strain energy, which is added to the free energy density of grains before recrystallization. The Arrhenius formula is used to describe boundary mobility and the activity energy is suggested with a value of zinc segregation energy at the boundary. However, the mobility constant in the formula was found out by fitting to a group of grain size measurements during recrystallization of the alloy. The boundary range is suggested to decide the gradient parameters in addition of fitting to the experimental boundary energy value. These parameter values can be regarded as a database for other similar simulations and the fitting rules can also be applied to build up databases for any other alloy systems. The simulated results show a good agreement with reported experimental measurement of the alloy at the temperatures from 300 to 400℃ for up to 100 min but not at 250℃. This implies a mechanism variation in activity energy of the boundary mobility in the alloy at low temperature.展开更多
The transverse spin-2 Ising ferromagnetic model with a longitudinal crystal-field is studied within the mean-field theory based on Bogoliubov inequality for the Gibbs free energy. The ground-state phase diagram and th...The transverse spin-2 Ising ferromagnetic model with a longitudinal crystal-field is studied within the mean-field theory based on Bogoliubov inequality for the Gibbs free energy. The ground-state phase diagram and the tricritical point are obtained in the transverse field Ω/ zJ-longitudinal crystal D / zJ field plane. We find that there are the first order-order phase transitions in a very small range of D /zJ besides the usual first order-disorder phase transitions and the second order-disorder phase transitions,展开更多
Phase field method offers the prospect of being able to perform realistic numerical experiments on dendrite growth in metallic systems. In this study, the growth process of multiple dendrites in AI-2-mole-%-Si binary ...Phase field method offers the prospect of being able to perform realistic numerical experiments on dendrite growth in metallic systems. In this study, the growth process of multiple dendrites in AI-2-mole-%-Si binary alloy under isothermal solidification was simulated using phase field model. The simulation results showed the impingement of arbitrarily oriented crystals and the competitive growth among the grains during solidification. With the increase of growing time, the grains begin to coalesce and impinge the adjacent grains. When the dendrites start to impinge, the dendrite growth is obviously inhibited.展开更多
A pore-network model physically based on pore level multiphase flow was used to study the water-non-aqueous phase liquid (NAPL) displacement process, especially the effects of wettability, water-NAPL interracial ten...A pore-network model physically based on pore level multiphase flow was used to study the water-non-aqueous phase liquid (NAPL) displacement process, especially the effects of wettability, water-NAPL interracial tension, the fraction of NAPL-wet pores, and initial water saturation on the displacement. The computed data show that with the wettability of the mineral surfaces changing from strongly water-wet to NAPL-wet, capillary pressure and the NAPL relative permeability gradually decrease, while water-NAPL interfacial tension has little effect on water relative permeability, but initial water saturation has a strong effect on water and NAPL relative permeabilities. The analytical results may help to understand the micro-structure displacement process of non-aqueous phase liquid and to provide the theoretical basis for controlling NAPL migration.展开更多
Salt lake brine is a complex salt-water system under natural environment.Although many models can express the thermodynamic properties and phase equilibrium of electrolyte aqueous solution,the multi-temperature charac...Salt lake brine is a complex salt-water system under natural environment.Although many models can express the thermodynamic properties and phase equilibrium of electrolyte aqueous solution,the multi-temperature characteristics and predictability are still the goals of model development.In this study,a comprehensive thermodynamic model system is re-established based on the eNRTL model and some improvements:(1) new expression of long-range electrostatic term with symmetrical reference state is proposed to handle the electrolyte solution covering entire concentration range;(2) the temperature dependence of the binary interaction parameters is formulated with a Gibbs Helmholtz expression containing three temperature coefficients,the liquid parameters,which associated with Gibbs energy,enthalpy,and heat capacity contribution;and(3) liquid parameters and solid species data are regressed from properties and solubility data at full temperature range.Together the activity coefficient model,property models and parameters of liquid and solid offer a comprehensive thermodynamic model system for the typical bittern of MgCl2-CaCl2-H2 O binary and ternary systems,and it shows excellent agreement with the literature data for the ternary and binary systems.The successful prediction of complete phase diagram of ternary system shows that the model has the ability to deal with high concentration and high non-idealitv system,and the ability to extrapolate the temperature.展开更多
基金the National Natural Science Foundation of China(Grant No.12004049).
文摘We investigate a periodically driven Haldane model subjected to a two-stage driving scheme in the form of a step function.By using the Floquet theory,we obtain the topological phase diagram of the system.We also find that anomalous Floquet topological phases exist in the system.Focusing on examining the quench dynamics among topological phases,we analyze the site distribution of the 0-mode and p-mode edge states in long-period evolution after a quench.The results demonstrate that,under certain conditions,the site distribution of the 0-mode can be confined at the edge even in long-period evolution.Additionally,both the 0-mode and p-mode can recover and become confined at the edge in long-period evolution when the post-quench parameters(T,M_(2) /M_(1))in the phase diagram cross away from the phase boundary (M_(2)/ M_(1))=(6√3t2)/ M_(1)−1.Furthermore,we conclude that whether the edge state is confined at the edge in the long-period evolution after a quench depends on the similarity of the edge states before and after the quench.Our findings reveal some new characteristics of quench dynamics in a periodically driven system.
基金the National Natural Science Foundation of China(Grant No.62273033).
文摘This paper presents a comprehensive framework for analyzing phase transitions in collective models such as theVicsek model under various noise types. The Vicsek model, focusing on understanding the collective behaviors of socialanimals, is known due to its discontinuous phase transitions under vector noise. However, its behavior under scalar noiseremains less conclusive. Renowned for its efficacy in the analysis of complex systems under both equilibrium and nonequilibriumstates, the eigen microstate method is employed here for a quantitative examination of the phase transitions inthe Vicsek model under both vector and scalar noises. The study finds that the Vicsek model exhibits discontinuous phasetransitions regardless of noise type. Furthermore, the dichotomy method is utilized to identify the critical points for thesephase transitions. A significant finding is the observed increase in the critical point for discontinuous phase transitions withescalation of population density.
基金Project supported by the Open Project of the Key Laboratory of Xinjiang Uygur Autonomous Region,China(Grant No.2021D04015)the Yili Kazakh Autonomous Prefecture Science and Technology Program Project,China(Grant No.YZ2022B021).
文摘Fractional molecular field theory(FMFT)is a phenomenological theory that describes phase transitions in crystals with randomly distributed components,such as the relaxor-ferroelectrics and spin glasses.In order to verify the feasibility of this theory,this paper fits it to the Monte Carlo simulations of specific heat and susceptibility versus temperature of two-dimensional(2D)random-site Ising model(2D-RSIM).The results indicate that the FMFT deviates from the 2D-RSIM significantly.The main reason for the deviation is that the 2D-RSIM is a typical system of component random distribution,where the real order parameter is spatially heterogeneous and has no symmetry of space translation,but the basic assumption of FMFT means that the parameter is spatially uniform and has symmetry of space translation.
基金Project supported by the Hefei National Research Center for Physical Sciences at the Microscale (Grant No.KF2021002)the Natural Science Foundation of Shanxi Province,China (Grant Nos.202303021221029 and 202103021224051)+2 种基金the National Natural Science Foundation of China (Grant Nos.11975024,12047503,and 12275263)the Anhui Provincial Supporting Program for Excellent Young Talents in Colleges and Universities (Grant No.gxyq ZD2019023)the National Key Research and Development Program of China (Grant No.2018YFA0306501)。
文摘The two-component cold atom systems with anisotropic hopping amplitudes can be phenomenologically described by a two-dimensional Ising-XY coupled model with spatial anisotropy.At low temperatures,theoretical predictions[Phys.Rev.A 72053604(2005)]and[arXiv:0706.1609]indicate the existence of a topological ordered phase characterized by Ising and XY disorder but with 2XY ordering.However,due to ergodic difficulties faced by Monte Carlo methods at low temperatures,this topological phase has not been numerically explored.We propose a linear cluster updating Monte Carlo method,which flips spins without rejection in the anisotropy limit but does not change the energy.Using this scheme and conventional Monte Carlo methods,we succeed in revealing the nature of topological phases with half-vortices and domain walls.In the constructed global phase diagram,Ising and XY-type transitions are very close to each other and differ significantly from the schematic phase diagram reported earlier.We also propose and explore a wide range of quantities,including magnetism,superfluidity,specific heat,susceptibility,and even percolation susceptibility,and obtain consistent and reliable results.Furthermore,we observed first-order transitions characterized by common intersection points in magnetizations for different system sizes,as opposed to the conventional phase transition where Binder cumulants of various sizes share common intersections.The critical exponents of different types of phase transitions are reasonably fitted.The results are useful to help cold atom experiments explore the half-vortex topological phase.
基金supported as part of the Computational Materials Sciences Program funded by the U.S.Department of Energy,Office of Science,Basic Energy Sciences,under Award No.DE-SC0020145Y.Z.would like to acknowledge support for his effort by the Simons Foundation through Grant No.357963 and NSF grant DMS-2142500.
文摘The phase field method is playing an increasingly important role in understanding and predicting morphological evolution in materials and biological systems.Here,we develop a new analytical approach based on the bifurcation analysis to explore the mathematical solution structure of phase field models.Revealing such solution structures not only is of great mathematical interest but also may provide guidance to experimentally or computationally uncover new morphological evolution phenomena in materials undergoing electronic and structural phase transitions.To elucidate the idea,we apply this analytical approach to three representative phase field equations:the Allen-Cahn equation,the Cahn-Hilliard equation,and the Allen-Cahn-Ohta-Kawasaki system.The solution structures of these three phase field equations are also verified numerically by the homotopy continuation method.
基金supported by the National Natural Science Foundation of China(Nos.12205158 and 11975132)the Shandong Provincial Natural Science Foundation,China(Nos.ZR2021QA037,ZR2022JQ04 and ZR2019YQ01)。
文摘We investigated the properties of the phase diagram of high-order susceptibilities,speed of sound,and polytropic index based on an extended Nambu-Jona-Lasinio model with an eight-quark scalar-vector interaction.Non-monotonic behavior was observed in all these quantities around the phase transition boundary,which also revealed the properties of the critical point.Further,this study indicated that the chiral phase transition boundary and critical point could vary depending on the scalarvector coupling constant G_(SV).At finite densities and temperatures,the negative G_(SV)term exhibited attractive interactions,which enhanced the critical point temperature and reduced the chemical potential.The G_(SV)term also affected the properties of the high-order susceptibilities,speed of sound,and polytropic index near the critical point.The non-monotonic(peak or dip)structures of these quantities shifted to a low baryon chemical potential(and high temperature)with a negative G_(SV).G_(SV)also changed the amplitude and range of the nonmonotonic regions.Therefore,the scalar-vector interaction was useful for locating the phase boundary and critical point in QCD phase diagram by comparing the experimental data.The study of the non-monotonic behavior of high-order susceptibilities,speed of sound,and polytropic index is of great interest,and further observations related to high-order susceptibilities,speed of sound,and polytropic index being found and applied to the search for critical points in heavy-ion collisions and the study of compact stars are eagerly awaited.
基金supported in part by the National Key R&D Program of China (No.2021YFB2601404)Beijing Natural Science Foundation (No.3232053)National Natural Science Foundation of China (Nos.51929701 and 52127812)。
文摘In contrast to conventional transformers, power electronic transformers, as an integral component of new energy power system, are often subjected to high-frequency and transient electrical stresses, leading to heightened concerns regarding insulation failures. Meanwhile, the underlying mechanism behind discharge breakdown failure and nanofiller enhancement under high-frequency electrical stress remains unclear. An electric-thermal coupled discharge breakdown phase field model was constructed to study the evolution of the breakdown path in polyimide nanocomposite insulation subjected to high-frequency stress. The investigation focused on analyzing the effect of various factors, including frequency, temperature, and nanofiller shape, on the breakdown path of Polyimide(PI) composites. Additionally, it elucidated the enhancement mechanism of nano-modified composite insulation at the mesoscopic scale. The results indicated that with increasing frequency and temperature, the discharge breakdown path demonstrates accelerated development, accompanied by a gradual dominance of Joule heat energy. This enhancement is attributed to the dispersed electric field distribution and the hindering effect of the nanosheets. The research findings offer a theoretical foundation and methodological framework to inform the optimal design and performance management of new insulating materials utilized in high-frequency power equipment.
基金Project(2011CB606306)supported by the National Basic Research Program of ChinaProject(51101014)supported by the National Natural Science Foundation of ChinaProject(SKLSP201214)supported by the State Key Laboratory of Solidification Processing in Northwestern Polytechnical University,China
文摘A thermodynamic consistent phase field model is developed to describe the sintering process with multiphase powders. In this model, the interface region is assumed to be a mixture of different phases with the same chemical potential, but with different compositions. The interface diffusion and boundary diffusion are also considered in the model. As an example, the model is applied to the sintering process with Fe-Cu powders. The free energy of each phase is described by the well-developed thermodynamic models, together with the published optimized parameters. The microstructure and solute distribution during the sintering process can both be obtained quantitively.
基金Project(51275486)supported by the National Natural Science Foundation of China
文摘The early precipitation process of Ni(75)Al(14)Mo(11) alloy was simulated by microscopic phase-field model at different temperatures.The microstructure of the alloy,the precipitation time of Llo structure and occupation probability of the three kinds of atoms were investigated.It is indicated that the non-stoichiometric Ll0(Ⅰ/Ⅱ) phases are found in the precipitation process.With the temperature increasing,the appearance time of Ll0 is brought forward.The Ll0(Ⅱ) structure always precipitates earlier than the Ll0(Ⅰ) structure.Compared with lower temperature,higher temperature brings the formation time of Ll0 phase forward and makes Ll0 phase have a higher order degree.But lower temperature shortens the process time of the Ll0 phase to the Ll2 phase.Al and Mo atoms tend to occupy γ site,Ni atom tends to occupy a and β sites.At the same temperature,Al atom has stronger occupation ability than Mo atom in the same site.Ni,Al and Mo collectively form the composited Ll2 structure.
基金Project(51074117)supported by the National Natural Science Foundation of ChinaProject(2009CDA044)supported by the Foundation for Distinguished Young Scientists of Hubei Province,ChinaProjects(201104493,20100471161)supported by the China Postdoctoral Science Foundation
文摘Scanning electron microscopy and X-ray energy dispersive spectrum analysis show that the clusters of intermetallic AlFeSi particle are distributed on or near the aluminum foil stock surfaces heterogeneously. 3D finite element modeling shows that these clusters of hard particles induce the fracture of the nano-scale lubricant oil film at first and further lead to severe deformation in the nearby aluminum foil substrate along the rolling direction. Consequently, the optical property in this region differs from that in the surroundings, resulting in surface defects.
文摘Thixocasting requires manufacturing of billets with non-dendritic microstructure.Aluminum alloy A356 billets were produced by rheocasting in a mould placed inside a linear electromagnetic stirrer.Subsequent heat treatment was used to produce a transition from rosette to globular microstructure.The current and the duration of stirring were explored as control parameters.Simultaneous induction heating of the billet during stirring was quantified using experimentally determined thermal profiles.The effect of processing parameters on the dendrite fragmentation was discussed.Corresponding computational modeling of the process was performed using phase-field modeling of alloy solidification in order to gain insight into the process of morphological changes of a solid during this process.A non-isothermal alloy solidification model was used for simulations.The morphological evolution under such imposed thermal cycles was simulated and compared with experimentally determined one.Suitable scaling using the thermosolutal diffusion distances was used to overcome computational difficulties in quantitative comparison at system scale.The results were interpreted in the light of existing theories of microstructure refinement and globularisation.
基金Item Sponsored by State High Technology Research and Development Program(863 Plan) of China (2001AA332020)
文摘Several methods representing the evolution of microstructure were introduced, which include the Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation, Internal State Variable (ISV) framework, Koistinen-Marburger (K-M) equation, modified Magee's rule and phase field model, etc. By combining calculation of martensite transformation kinetics, considering the selection of parameters with the effect of austenite grain size (AGS), some suitable ways of obtaining better results have been proposed.
基金financially supported by the Educational Department of Liaoning Province (No.20060744)the Shenyang Nurturing Young Scientific Technological Talents Items (No.1081230-1-00)
文摘Single dendrite and multi-dendrite growth for Al-2 mol pct Si alloy during isothermal solidification are simulated by phase field method. In the case of single equiaxed dendrite growth, the secondary and the necking phenomenon can be observed. For multi-dendrite growth, there exists the competitive growth among the dendrites during solidification. As solidification proceeds, growing and coarsening of the primary arms occurs, together with the branching and coarsening of the secondary arms. When the diffusion fields of dendrite tips come into contact with those of the branches growing from the neighboring dendrites, the dendrites stop growing and being to ripen and thicken.
文摘In this paper,a numerical investigation about the metal transfer of GMAW is investigated based on the phase field model.Be different of most published work,we take the thermocapillary effect and mixture energy into the process of phase transfer and interface change which is different from volume of fluid( VOF) method.We discretize the whole model with a continuous finite element method and we also apply a penalty formulation to the continuity condition enhancing the stability of the pressure.Metal transfer of GMAW with constant and pulse current is computed as numerical examples which agrees well with the data of high-speed photography.The result shows that the computing process of the phase field model is stability and it has a higher precision in predicting the diameter of droplet.
基金Supported by the National Natural Science Foundation of China and Laboratory for Nonlinear Mechanics of Continuous Media,Institute of Mechanics,Chinese Academy of Sciences.
文摘The relations of bulk modulus, shear modulus, Young's modulus and the Poisson's ratio with porosity of foam plastics are determined by a three phase spheroidal model commonly used in Composite Mechanics. The results are compared with those using differential scheme. It is shown that the material properties derived from the present model normally are larger than those obtained by differential scheme for foam plastics with identical porosity. The differences in shear moduli and Young's moduli obtained by the two methods are small but they are larger for bulk moduli of incompressible matrix and Poisson's ratios. The Young's moduli of high density foam plastics derived by the present model agree better with experimental ones.
基金the National Natural Science Foundation of China for the financial support under the grant Nos.50771028 and 50471024Education Ministry of China for an outstanding teacher research fund to this study.
文摘A model has been established to simulate the realistic spatio-temporal microstructure evolution in recrystallization of a magnesium alloy using the phase field approach. A set of rules have been proposed to decide the real physical value of all parameters in the model. The thermodynamic software THERMOCALC is applied to determine the local chemical free energy and strain energy, which is added to the free energy density of grains before recrystallization. The Arrhenius formula is used to describe boundary mobility and the activity energy is suggested with a value of zinc segregation energy at the boundary. However, the mobility constant in the formula was found out by fitting to a group of grain size measurements during recrystallization of the alloy. The boundary range is suggested to decide the gradient parameters in addition of fitting to the experimental boundary energy value. These parameter values can be regarded as a database for other similar simulations and the fitting rules can also be applied to build up databases for any other alloy systems. The simulated results show a good agreement with reported experimental measurement of the alloy at the temperatures from 300 to 400℃ for up to 100 min but not at 250℃. This implies a mechanism variation in activity energy of the boundary mobility in the alloy at low temperature.
文摘The transverse spin-2 Ising ferromagnetic model with a longitudinal crystal-field is studied within the mean-field theory based on Bogoliubov inequality for the Gibbs free energy. The ground-state phase diagram and the tricritical point are obtained in the transverse field Ω/ zJ-longitudinal crystal D / zJ field plane. We find that there are the first order-order phase transitions in a very small range of D /zJ besides the usual first order-disorder phase transitions and the second order-disorder phase transitions,
基金supported by the Doctor Foundational Research Project in Shenyang Ligong University(Serial Number:0010).
文摘Phase field method offers the prospect of being able to perform realistic numerical experiments on dendrite growth in metallic systems. In this study, the growth process of multiple dendrites in AI-2-mole-%-Si binary alloy under isothermal solidification was simulated using phase field model. The simulation results showed the impingement of arbitrarily oriented crystals and the competitive growth among the grains during solidification. With the increase of growing time, the grains begin to coalesce and impinge the adjacent grains. When the dendrites start to impinge, the dendrite growth is obviously inhibited.
文摘A pore-network model physically based on pore level multiphase flow was used to study the water-non-aqueous phase liquid (NAPL) displacement process, especially the effects of wettability, water-NAPL interracial tension, the fraction of NAPL-wet pores, and initial water saturation on the displacement. The computed data show that with the wettability of the mineral surfaces changing from strongly water-wet to NAPL-wet, capillary pressure and the NAPL relative permeability gradually decrease, while water-NAPL interfacial tension has little effect on water relative permeability, but initial water saturation has a strong effect on water and NAPL relative permeabilities. The analytical results may help to understand the micro-structure displacement process of non-aqueous phase liquid and to provide the theoretical basis for controlling NAPL migration.
基金financial support of the National Natural Science Foundation of China(U1407204,U1707602)the Yangtze Scholars and Innovative Research Team in University of Education of China+1 种基金the Innovative Research Team of Tianjin Municipal Education Commission(TD12-5004)Foundation of Tianjin Key Laboratory of Marine Resources and Chemistry(201602)。
文摘Salt lake brine is a complex salt-water system under natural environment.Although many models can express the thermodynamic properties and phase equilibrium of electrolyte aqueous solution,the multi-temperature characteristics and predictability are still the goals of model development.In this study,a comprehensive thermodynamic model system is re-established based on the eNRTL model and some improvements:(1) new expression of long-range electrostatic term with symmetrical reference state is proposed to handle the electrolyte solution covering entire concentration range;(2) the temperature dependence of the binary interaction parameters is formulated with a Gibbs Helmholtz expression containing three temperature coefficients,the liquid parameters,which associated with Gibbs energy,enthalpy,and heat capacity contribution;and(3) liquid parameters and solid species data are regressed from properties and solubility data at full temperature range.Together the activity coefficient model,property models and parameters of liquid and solid offer a comprehensive thermodynamic model system for the typical bittern of MgCl2-CaCl2-H2 O binary and ternary systems,and it shows excellent agreement with the literature data for the ternary and binary systems.The successful prediction of complete phase diagram of ternary system shows that the model has the ability to deal with high concentration and high non-idealitv system,and the ability to extrapolate the temperature.