期刊文献+
共找到17,822篇文章
< 1 2 250 >
每页显示 20 50 100
A low cost composite quasi-solid electrolyte of LATP, TEGDME,and LiTFSI for rechargeable lithium batteries 被引量:1
1
作者 黄杰 彭佳悦 +6 位作者 凌仕刚 杨琪 邱纪亮 卢嘉泽 郑杰允 李泓 陈立泉 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第6期471-476,共6页
The composite quasi solid state electrolytes(CQSE) is firstly synthesized with quasi solid state electrolytes(QSE) and lithium-ion-conducting material Li1.4Al0.4Ti1.6(PO4)3(LATP), and the QSE consists of [LiG4... The composite quasi solid state electrolytes(CQSE) is firstly synthesized with quasi solid state electrolytes(QSE) and lithium-ion-conducting material Li1.4Al0.4Ti1.6(PO4)3(LATP), and the QSE consists of [LiG4][TFSI] with fumed silica nanoparticles. Compared with LATP, CQSE greatly improves the interface conductance of solid electrolytes. In addition,it has lower liquid volume relative to QSE. Although the liquid volume fraction of CQSE is droped to 60%, its conductivity can also reach 1.39 × 10^-4S/cm at 20℃. Linear sweep voltammetry(LSV) is conducted on each composite electrolyte.The results show the possibility that CQSE has superior electrochemical stability up to 5.0 V versus Li/Li^+1. TG curves also show that composite electrolytes have higher thermal stability. In addition, the performance of Li/QSE/Li Mn2O4 and Li/CQSE/Li Mn2O4 batteries is evaluated and shows good electrochemical characteristics at 60℃. 展开更多
关键词 quasi solid state electrolytes Li1.4Al0.4Ti1.6(PO4)3 CONDUCTIVITIES
下载PDF
Quasi-solid electrolyte membranes with percolated metal–organic frameworks for practical lithium-metal batteries 被引量:1
2
作者 Zijian Li Qianqian Liu +6 位作者 Lina Gao Yifei Xu Xueqian Kong Yang Luo Huaxin Peng Yurong Ren Hao Bin Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第1期354-360,I0012,共8页
High-energy Li-metal batteries (LMBs) suffer from short cycle life and safety issues due to severe parasitic reactions and dendrite growth of Li metal anode (LMA) in liquid electrolytes [1–3].It is generally believed... High-energy Li-metal batteries (LMBs) suffer from short cycle life and safety issues due to severe parasitic reactions and dendrite growth of Li metal anode (LMA) in liquid electrolytes [1–3].It is generally believed that replacing liquid electrolytes with solidstate electrolytes (SSEs) would be a feasible approach for practical LMBs [4,5]. Conventional SSEs including ceramic and polymer electrolytes have been studied for decades. 展开更多
关键词 Solid electrolyte Composite membrane Metal-organic framework Lithium metal anode Lithium-metal battery
下载PDF
A design of Nafion-coated bilayered quasi-solid electrolyte for lithium-O_(2) batteries with high performance
3
作者 Yingfei Hou Lin Jiang +3 位作者 Yaoyao Zhang Zhiwen Qin Chi Jiang Ming Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第6期208-216,共9页
Lithium-air(also known as lithium-oxygen)batteries have attracted considerable global attention in recent years due to their extremely high energy density(11,140 W·h·kg^(-1)).The electrolyte is a key element... Lithium-air(also known as lithium-oxygen)batteries have attracted considerable global attention in recent years due to their extremely high energy density(11,140 W·h·kg^(-1)).The electrolyte is a key element in lithium-air batteries and the traditional organic electrolyte has great safety risk due to leakage.On the contrary,the polymer electrolyte has the advantages of high safety,high stability and easy processing comparing with the organic liquid electrolytes.In this paper,a new idea was proposed to coat the Nafion membrane on a layer of polymer for blocking the oxidation reduction electric(RM)and Li based on the selective permeability on lithium ion of the Nafion membrane.Self-made thicknesscontrollable Nafion membrane,polyvinylidene fluoride-hexafluoropropylene copolymer(PVDF-HFP)and 2,2,6,6-tetramethylpiperidinooxy(TEMPO)were used to prepare a quasi solid polymer electrolyte(NSPE).Electrochemical workstation and LAND battery testing system were used to perform a galvanostatic charge/discharge test on Li-O_(2).The ionic conductivity of NSPE was 4.3×10^(-4)S·cm^(-1)at room temperature and the discharge platform was 2.6 V and the charging voltage was 3.7 V after 50 cycles with the cut-off capacity of 500 mA·h·g^(-1). 展开更多
关键词 Lithium-air battery Polymer electrolyte Redox mediator P(VDF-HFP) NAFION
下载PDF
Lamellar quasi-solid electrolyte with nanoconfined deep eutectic solvent for high-performance lithium battery
4
作者 Shiwei Liu Jing Wang +5 位作者 Keqi Wu Zhirong Yang Yan Dai Junmei Zhang Wenjia Wu Jingtao Wang 《Nano Research》 SCIE EI CSCD 2024年第7期6176-6183,共8页
Electrolytes with high-efficiency lithium-ion transfer and reliable safety are of great importance for lithium battery.Although having superior ionic conductivity(10^(−3)–10^(−2) S·cm^(−1)),traditional liquid-st... Electrolytes with high-efficiency lithium-ion transfer and reliable safety are of great importance for lithium battery.Although having superior ionic conductivity(10^(−3)–10^(−2) S·cm^(−1)),traditional liquid-state electrolytes always suffer from low lithium-ion transference number(tLi+<0.4)and thus undesirable battery performances.Herein,the deep eutectic solvent(DES)is vacuum-filtered into the~1 nm interlayer channel of vermiculite(Vr)lamellar framework to fabricate a quasi-solid electrolyte(Vr-DES QSE).We demonstrate that the nanoconfinement effect of interlayer channel could facilitate the opening of solvation shell around lithiumion.Meanwhile,the interaction from channel wall could inhibit the movement of anion.These enable high-efficiency lithium-ion transfer:2.61×10^(−4)S·cm^(−1)at 25℃.Importantly,the tLi+value reaches 0.63,which is 4.5 times of that of bulk DES,and much higher than most present liquid/quasi-solid electrolytes.In addition,Vr-DES QSE shows significantly improved interfacial stability with Li anode as compared with DES.The assembled Li symmetric cell can operate stably for 1000 h at 0.1 mA·cm^(−2).The lithium iron phosphate(LFP)|Vr-DES QSE|Li cell exhibits high capacity of 142.1 mAh·g^(−1)after 200 cycles at 25℃ and 0.5 C,with a capacity retention of 94.5%.The strategy of open solvation shell through nanoconfinement effect of lamellar framework may shed light on the development of advanced electrolytes. 展开更多
关键词 quasi-solid electrolyte deep eutectic solvent lamellar structure lithium-ion transference number solvation shell
原文传递
Lithiophilic Li-Si alloy-solid electrolyte interface enabled by high-concentration dual salt-reinforced quasi-solid-state electrolyte
5
作者 Yuanxing Zhang Ling Zhang +7 位作者 Zhiguang Zhao Yuxiang Zhang Jingwen Cui Chengcai Liu Daobin Mu Yuefeng Su Borong Wu Feng Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期216-230,I0005,共16页
Solid polymer electrolytes(SPEs)are urgently required to achieve practical solid-state lithium metal batteries(LMBs)and lithium-ion batteries(LIBs),Herein,we proposed a mechanism for modulating interfacial conduction ... Solid polymer electrolytes(SPEs)are urgently required to achieve practical solid-state lithium metal batteries(LMBs)and lithium-ion batteries(LIBs),Herein,we proposed a mechanism for modulating interfacial conduction and anode interfaces in high-concentration SPEs by LiDFBOP.Optimized electrolyte exhibits superior ionic conductivity and remarkable interface compatibility with salt-rich clusters:(1)polymer-plastic crystal electrolyte(P-PCE,TPU-SN matrix)dissociates ion pairs to facilitate Li+transport in the electrolyte and regulates Li^(+)diffusion in the SEI.The crosslinking structure of the matrix compensates for the loss of mechanical strength at high-salt concentrations;(2)dual-anion TFSI^(-)_(n)-DFBOP^(-)_(m)in the Li^(+)solvation sheath facilitates facile Li^(+)desolvation and formation of salt-rich clusters and is conducive to the formation of Li conductive segments of TPU-SN matrix;(3)theoretical calculations indicate that the decomposition products of LiDFBOP form SEI with lower binding energy with LiF in the SN system,thereby enhancing the interfacial electrochemical redox kinetics of SPE and creating a solid interface SEI layer rich in LiF.As a result,the optimized electrolyte exhibits an excellent ionic conductivity of9.31×10^(-4)S cm^(-1)at 30℃and a broadened electrochemical stability up to 4.73 V.The designed electrolyte effectively prevents the formation of Li dendrites in Li symmetric cells for over 6500 h at0.1 mA cm^(-2).The specific Li-Si alloy-solid state half-cell capacity shows 711.6 mAh g^(-1)after 60 cycles at 0.3 A g^(-1).Excellent rate performance and cycling stability are achieved for these solid-state batteries with Li-Si alloy anodes and NCM 811 cathodes.NCM 811‖Prelithiated silicon-based anode solid-state cell delivers a discharge capacity of 195.55 mAh g^(-1)and a capacity retention of 97.8%after 120 cycles.NCM 811‖Li solid-state cell also delivers capacity retention of 84.2%after 450 cycles. 展开更多
关键词 Prelithiation Li-Si alloy anode Solid-state electrolyte SEI layer
下载PDF
Dual-salt poly(tetrahydrofuran) electrolyte enables quasi-solid-state lithium metal batteries to operate at -30 ℃
6
作者 Zhiyong Li Zhuo Li +1 位作者 Rui Yu Xin Guo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期456-463,共8页
The stable operation of solid-state lithium metal batteries at low temperatures is plagued by severe restrictions from inferior electrolyte-electrode interface compatibility and increased energy barrier for Li^(+)migr... The stable operation of solid-state lithium metal batteries at low temperatures is plagued by severe restrictions from inferior electrolyte-electrode interface compatibility and increased energy barrier for Li^(+)migration.Herein,we prepare a dual-salt poly(tetrahydrofuran)-based electrolyte consisting of lithium hexafluorophosphate and lithium difluoro(oxalato)borate(LiDFOB).The Li-salt anions(DFOB−)not only accelerate the ring-opening polymerization of tetrahydrofuran,but also promote the formation of highly ion-conductive and sustainable interphases on Li metal anodes without sacrificing the Li^(+)conductivity of electrolytes,which is favorable for Li^(+)transport kinetics at low temperatures.Applications of this polymer electrolyte in Li||LiFePO_(4)cells show 82.3%capacity retention over 1000 cycles at 30℃and endow stable discharge capacity at−30℃.Remarkably,the Li||LiFePO4 cells retain 52%of their room-temperature capacity at−20℃and 0.1 C.This rational design of dual-salt polymer-based electrolytes may provide a new perspective for the stable operation of quasi-solid-state batteries at low temperatures. 展开更多
关键词 Poly(tetrahydrofuran) Dual-salt electrolyte Solidel ectrolyte interphase Low-temperature operation quasi-solid-state battery
下载PDF
Janus Quasi‑Solid Electrolyte Membranes with Asymmetric Porous Structure for High‑Performance Lithium‑Metal Batteries
7
作者 Zerui Chen Wei Zhao +4 位作者 Qian Liu Yifei Xu Qinghe Wang Jinmin Lin Hao Bin Wu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期221-232,共12页
Quasi-solid electrolytes(QSEs)based on nanoporous materials are promising candidates to construct high-performance Limetal batteries(LMBs).However,simultaneously boosting the ionic conductivity(σ)and lithium-ion tran... Quasi-solid electrolytes(QSEs)based on nanoporous materials are promising candidates to construct high-performance Limetal batteries(LMBs).However,simultaneously boosting the ionic conductivity(σ)and lithium-ion transference number(t^(+)) of liquid electrolyte confined in porous matrix remains challenging.Herein,we report a novel Janus MOFLi/MSLi QSEs with asymmetric porous structure to inherit the benefits of both mesoporous and microporous hosts.This Janus QSE composed of mesoporous silica and microporous MOF exhibits a neat Li^(+) conductivity of 1.5.10^(–4)S cm^(−1) with t^(+) of 0.71.A partially de-solvated structure and preference distribution of Li^(+)near the Lewis base O atoms were depicted by MD simulations.Meanwhile,the nanoporous structure enabled efficient ion flux regulation,promoting the homogenous deposition of Li^(+).When incorporated in Li||Cu cells,the MOFLi/MSLi QSEs demonstrated a high Coulombic efficiency of 98.1%,surpassing that of liquid electrolytes(96.3%).Additionally,NCM 622||Li batteries equipped with MOFLi/MSLi QSEs exhibited promising rate performance and could operate stably for over 200 cycles at 1 C.These results highlight the potential of Janus MOFLi/MSLi QSEs as promising candidates for next-generation LMBs. 展开更多
关键词 Metal-organic frameworks Mesoporous silicas quasi-solid electrolytes Janus structure Lithium-metal battery
下载PDF
Unique double-layer solid electrolyte interphase formed with fluorinated ether-based electrolytes for high-voltage lithium metal batteries 被引量:2
8
作者 Ruo Wang Jiawei Li +11 位作者 Bing Han Qingrong Wang Ruohong Ke Tong Zhang Xiaohu Ao Guangzhao Zhang Zhongbo Liu Yunxian Qian Fangfang Pan Iseult Lynch Jun Wang Yonghong Deng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期532-542,I0012,共12页
Li metal batteries using high-voltage layered oxides cathodes are of particular interest due to their high energy density.However,they suffer from short lifespan and extreme safety concerns,which are attributed to the... Li metal batteries using high-voltage layered oxides cathodes are of particular interest due to their high energy density.However,they suffer from short lifespan and extreme safety concerns,which are attributed to the degradation of layered oxides and the decomposition of electrolyte at high voltage,as well as the high reactivity of metallic Li.The key is the development of stable electrolytes against both highvoltage cathodes and Li with the formation of robust interphase films on the surfaces.Herein,we report a highly fluorinated ether,1,1,1-trifluoro-2-[(2,2,2-trifluoroethoxy)methoxy]ethane(TTME),as a cosolvent,which not only functions as a diluent forming a localized high concentration electrolyte(LHCE),but also participates in the construction of the inner solvation structure.The TTME-based electrolyte is stable itself at high voltage and induces the formation of a unique double-layer solid electrolyte interphase(SEI)film,which is embodied as one layer rich in crystalline structural components for enhanced mechanical strength and another amorphous layer with a higher concentration of organic components for enhanced flexibility.The Li||Cu cells display a noticeably high Coulombic efficiency of 99.28%after 300 cycles and Li symmetric cells maintain stable cycling more than 3200 h at 0.5 mA/cm^(2) and 1.0m Ah/cm^(2).In addition,lithium metal cells using LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) and Li CoO_(2) cathodes(both loadings~3.0 m Ah/cm^(2))realize capacity retentions of>85%over 240 cycles with a charge cut-off voltage of 4.4 V and 90%for 170 cycles with a charge cut-off voltage of 4.5 V,respectively.This study offers a bifunctional ether-based electrolyte solvent beneficial for high-voltage Li metal batteries. 展开更多
关键词 Lithium metal batteries High-voltage layered oxides Fluorinated ether-based electrolytes Solid electrolyte interphase Cathode electrolyte interphase
下载PDF
Trend of Developing Aqueous Liquid and Gel Electrolytes for Sustainable,Safe,and High‑Performance Li‑Ion Batteries 被引量:2
9
作者 Donghwan Ji Jaeyun Kim 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期17-34,共18页
Current lithium-ion batteries(LIBs)rely on organic liquid electrolytes that pose significant risks due to their flammability and toxicity.The potential for environmental pollution and explosions resulting from battery... Current lithium-ion batteries(LIBs)rely on organic liquid electrolytes that pose significant risks due to their flammability and toxicity.The potential for environmental pollution and explosions resulting from battery damage or fracture is a critical concern.Water-based(aqueous)electrolytes have been receiving attention as an alternative to organic electrolytes.However,a narrow electrochemicalstability window,water decomposition,and the consequent low battery operating voltage and energy density hinder the practical use of aqueous electrolytes.Therefore,developing novel aqueous electrolytes for sustainable,safe,high-performance LIBs remains challenging.This Review first commences by summarizing the roles and requirements of electrolytes–separators and then delineates the progression of aqueous electrolytes for LIBs,encompassing aqueous liquid and gel electrolyte development trends along with detailed principles of the electrolytes.These aqueous electrolytes are progressed based on strategies using superconcentrated salts,concentrated diluents,polymer additives,polymer networks,and artificial passivation layers,which are used for suppressing water decomposition and widening the electrochemical stability window of water of the electrolytes.In addition,this Review discusses potential strategies for the implementation of aqueous Li-metal batteries with improved electrolyte–electrode interfaces.A comprehensive understanding of each strategy in the aqueous system will assist in the design of an aqueous electrolyte and the development of sustainable and safe high-performance batteries. 展开更多
关键词 Lithium-ion battery(LIB) Aqueous electrolyte Gel electrolyte Electrochemical stability window Li dendrite
下载PDF
Electrolyte Design for Low‑Temperature Li‑Metal Batteries:Challenges and Prospects 被引量:1
10
作者 Siyu Sun Kehan Wang +3 位作者 Zhanglian Hong Mingjia Zhi Kai Zhang Jijian Xu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期365-382,共18页
Electrolyte design holds the greatest opportunity for the development of batteries that are capable of sub-zero temperature operation.To get the most energy storage out of the battery at low temperatures,improvements ... Electrolyte design holds the greatest opportunity for the development of batteries that are capable of sub-zero temperature operation.To get the most energy storage out of the battery at low temperatures,improvements in electrolyte chemistry need to be coupled with optimized electrode materials and tailored electrolyte/electrode interphases.Herein,this review critically outlines electrolytes’limiting factors,including reduced ionic conductivity,large de-solvation energy,sluggish charge transfer,and slow Li-ion transportation across the electrolyte/electrode interphases,which affect the low-temperature performance of Li-metal batteries.Detailed theoretical derivations that explain the explicit influence of temperature on battery performance are presented to deepen understanding.Emerging improvement strategies from the aspects of electrolyte design and electrolyte/electrode interphase engineering are summarized and rigorously compared.Perspectives on future research are proposed to guide the ongoing exploration for better low-temperature Li-metal batteries. 展开更多
关键词 Solid electrolyte interphase Li metal Low temperature electrolyte design BATTERIES
下载PDF
Challenges in Li-ion battery high-voltage technology and recent advances in high-voltage electrolytes 被引量:1
11
作者 Jianguo Liu Baohui Li +2 位作者 Jinghang Cao Xiao Xing Gan Cui 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期73-98,共26页
The electrolyte directly contacts the essential parts of a lithium-ion battery,and as a result,the electrochemical properties of the electrolyte have a significant impact on the voltage platform,charge discharge capac... The electrolyte directly contacts the essential parts of a lithium-ion battery,and as a result,the electrochemical properties of the electrolyte have a significant impact on the voltage platform,charge discharge capacity,energy density,service life,and rate discharge performance.By raising the voltage at the charge/discharge plateau,the energy density of the battery is increased.However,this causes transition metal dissolution,irreversible phase changes of the cathode active material,and parasitic electrolyte oxidation reactions.This article presents an overview of these concerns to provide a clear explanation of the issues involved in the development of electrolytes for high-voltage lithium-ion batteries.Additionally,solidstate electrolytes enable various applications and will likely have an impact on the development of batteries with high energy densities.It is necessary to improve the high-voltage performance of electrolytes by creating solvents with high thermal stabilities and high voltage resistance and additives with superior film forming performance,multifunctional capabilities,and stable lithium salts.To offer suggestions for the future development of high-energy lithium-ion batteries,we conclude by offering our own opinions and insights on the current development of lithium-ion batteries. 展开更多
关键词 Lithium-ion battery High voltage electrolyte additive Solid electrolyte
下载PDF
Asymmetric Electrolytes Design for Aqueous Multivalent Metal Ion Batteries 被引量:1
12
作者 Xiaochen Yang Xinyu Wang +2 位作者 Yue Xiang Longtao Ma Wei Huang 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期227-253,共27页
With the rapid development of portable electronics and electric road vehicles,high-energy-density batteries have been becoming front-burner issues.Traditionally,homogeneous electrolyte cannot simultaneously meet diame... With the rapid development of portable electronics and electric road vehicles,high-energy-density batteries have been becoming front-burner issues.Traditionally,homogeneous electrolyte cannot simultaneously meet diametrically opposed demands of high-potential cathode and low-potential anode,which are essential for high-voltage batteries.Meanwhile,homogeneous electrolyte is difficult to achieve bi-or multi-functions to meet different requirements of electrodes.In comparison,the asymmetric electrolyte with bi-or multi-layer disparate components can satisfy distinct requirements by playing different roles of each electrolyte layer and meanwhile compensates weakness of individual electrolyte.Consequently,the asymmetric electrolyte can not only suppress by-product sedimentation and continuous electrolyte decomposition at the anode while preserving active substances at the cathode for high-voltage batteries with long cyclic lifespan.In this review,we comprehensively divide asymmetric electrolytes into three categories:decoupled liquid-state electrolytes,bi-phase solid/liquid electrolytes and decoupled asymmetric solid-state electrolytes.The design principles,reaction mechanism and mutual compatibility are also studied,respectively.Finally,we provide a comprehensive vision for the simplification of structure to reduce costs and increase device energy density,and the optimization of solvation structure at anolyte/catholyte interface to realize fast ion transport kinetics. 展开更多
关键词 Asymmetric electrolyte Aqueous multivalent metal ion batteries Electrochemical stability windows electrolyte interface
下载PDF
Dilute Aqueous-Aprotic Electrolyte Towards Robust Zn-Ion Hybrid Supercapacitor with High Operation Voltage and Long Lifespan 被引量:2
13
作者 Shuilin Wu Yibing Yang +6 位作者 Mingzi Sun Tian Zhang Shaozhuan Huang Daohong Zhang Bolong Huang Pengfei Wang Wenjun Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期1-12,共12页
With the merits of the high energy density of batteries and power density of supercapacitors,the aqueous Zn-ion hybrid supercapacitors emerge as a promising candidate for applications where both rapid energy delivery ... With the merits of the high energy density of batteries and power density of supercapacitors,the aqueous Zn-ion hybrid supercapacitors emerge as a promising candidate for applications where both rapid energy delivery and moderate energy storage are required.However,the narrow electrochemical window of aqueous electrolytes induces severe side reactions on the Zn metal anode and shortens its lifespan.It also limits the operation voltage and energy density of the Zn-ion hybrid supercapacitors.Using'water in salt'electrolytes can effectively broaden their electrochemical windows,but this is at the expense of high cost,low ionic conductivity,and narrow temperature compatibility,compromising the electrochemical performance of the Zn-ion hybrid supercapacitors.Thus,designing a new electrolyte to balance these factors towards high-performance Zn-ion hybrid supercapacitors is urgent and necessary.We developed a dilute water/acetonitrile electrolyte(0.5 m Zn(CF_(3)SO_(3))_(2)+1 m LiTFSI-H_(2)O/AN)for Zn-ion hybrid supercapacitors,which simultaneously exhibited expanded electrochemical window,decent ionic conductivity,and broad temperature compatibility.In this electrolyte,the hydration shells and hydrogen bonds are significantly modulated by the acetonitrile and TFSI-anions.As a result,a Zn-ion hybrid supercapacitor with such an electrolyte demonstrates a high operating voltage up to 2.2 V and long lifespan beyond 120,000 cycles. 展开更多
关键词 Zn-ion supercapacitors Zn metal anode electrolyte engineering Hydrogen bonds Solvation structures
下载PDF
Atom substitution of the solid-state electrolyte Li_(10)GeP_(2)S_(12)for stabilized all-solid-state lithium metal batteries 被引量:1
14
作者 Zijing Wan Xiaozhen Chen +3 位作者 Ziqi Zhou Xiaoliang Zhong Xiaobing Luo Dongwei Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期28-38,I0002,共12页
Solid-state electrolyte Li_(10)GeP_(2)S_(12)(LGPS)has a high lithium ion conductivity of 12 mS cm^(-1)at room temperature,but its inferior chemical stability against lithium metal anode impedes its practical applicati... Solid-state electrolyte Li_(10)GeP_(2)S_(12)(LGPS)has a high lithium ion conductivity of 12 mS cm^(-1)at room temperature,but its inferior chemical stability against lithium metal anode impedes its practical application.Among all solutions,Ge atom substitution of the solid-state electrolyte LGPS stands out as the most promising solution to this interface problem.A systematic screening framework for Ge atom substitution including ionic conductivity,thermodynamic stability,electronic and mechanical properties is utilized to solve it.For fast screening,an enhanced model Dop Net FC using chemical formulas for the dataset is adopted to predict ionic conductivity.Finally,Li_(10)SrP_(2)S_(12)(LSrPS)is screened out,which has high lithium ion conductivity(12.58 mS cm^(-1)).In addition,an enhanced migration of lithium ion across the LSr PS/Li interface is found.Meanwhile,compared to the LGPS/Li interface,LSrPS/Li interface exhibits a larger Schottky barrier(0.134 eV),smaller electron transfer region(3.103?),and enhanced ability to block additional electrons,all of which contribute to the stabilized interface.The applied theoretical atom substitution screening framework with the aid of machine learning can be extended to rapid determination of modified specific material schemes. 展开更多
关键词 Atom substitution Solid-state electrolyte Machine learning Stabilized interface
下载PDF
Mechanical reliable,NIR light-induced rapid self-healing hydrogel electrolyte towards flexible zinc-ion hybrid supercapacitors with low-temperature adaptability and long service life 被引量:1
15
作者 Tengjia Gao Na Li +4 位作者 Yang Yang Jing Li Peng Ji Yunlong Zhou Jianxiong Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期63-73,共11页
Hydrogel electrolytes hold great potential in flexible zinc ion supercapacitors(ZICs)due to their high conductivity,good safety,and flexibility.However,freezing of electrolytes at low temperature(subzero)leads to dras... Hydrogel electrolytes hold great potential in flexible zinc ion supercapacitors(ZICs)due to their high conductivity,good safety,and flexibility.However,freezing of electrolytes at low temperature(subzero)leads to drastic reduction in ionic conductivity and mechanical properties that deteriorates the performance of flexible ZICs.Besides,the mechanical fracture during arbitrary deformations significantly prunes out the lifespan of the flexible device.Herein,a Zn^(2+)and Li^(+)co-doped,polypyrrole-dopamine decorated Sb_(2)S_(3)incorporated,and polyvinyl alcohol/poly(N-(2-hydroxyethyl)acrylamide)double-network hydrogel electrolyte is constructed with favorable mechanical reliability,anti-freezing,and self-healing ability.In addition,it delivers ultra-high ionic conductivity of 8.6 and 3.7 S m^(-1)at 20 and−30°C,respectively,and displays excellent mechanical properties to withstand tensile stress of 1.85 MPa with tensile elongation of 760%,together with fracture energy of 5.14 MJ m^(-3).Notably,the fractured hydrogel electrolyte can recover itself after only 90 s of infrared illumination,while regaining 83%of its tensile strain and almost 100%of its ionic conductivity during−30–60°C.Moreover,ZICs coupled with this hydrogel electrolyte not only show a wide voltage window(up to 2 V),but also provide high energy density of 230 Wh kg^(-1)at power density of 500 W kg^(-1)with a capacity retention of 86.7%after 20,000 cycles under 20°C.Furthermore,the ZICs are able to retain excellent capacity even under various mechanical deformation at−30°C.This contribution will open up new insights into design of advanced wearable flexible electronics with environmental adaptability and long-life span. 展开更多
关键词 Flexible zinc ion supercapacitor Hydrogel electrolyte Self-healing Anti-freezing
下载PDF
Bifunctional TiO_(2-x)nanofibers enhanced gel polymer electrolyte for high performance lithium metal batteries 被引量:1
16
作者 Yixin Wu Zhen Chen +6 位作者 Yang Wang Yu Li Chunxing Zhang Yihui Zhu Ziyu Yue Xin Liu Minghua Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期437-448,I0011,共13页
Exploration of advanced gel polymer electrolytes(GPEs)represents a viable strategy for mitigating dendritic lithium(Li)growth,which is crucial in ensuring the safe operation of high energy density Li metal batteries(L... Exploration of advanced gel polymer electrolytes(GPEs)represents a viable strategy for mitigating dendritic lithium(Li)growth,which is crucial in ensuring the safe operation of high energy density Li metal batteries(LMBs).Despite this,the application of GPEs is still hindered by inadequate ionic conductivity,low Li^(+)transference number,and subpar physicochemical properties.Herein,Ti O_(2-x)nanofibers(NF)with oxygen vacancy defects were synthesized by a one-step process as inorganic fillers to enhance the thermal/mechanical/ionic-transportation performances of composite GPEs.Various characterizations and theoretical calculations reveal that the oxygen vacancies on the surface of Ti O_(2-x)NF accelerate the dissociation of Li PF_6,promote the rapid transfer of free Li^(+),and influence the formation of Li F-enriched solid electrolyte interphase.Consequently,the composite GPEs demonstrate enhanced ionic conductivity(1.90m S cm^(-1)at room temperature),higher lithium-ion transference number(0.70),wider electrochemical stability window(5.50 V),superior mechanical strength,excellent thermal stability(210℃),and improved compatibility with lithium,resulting in superior cycling stability and rate performance in both Li||Li,Li||Li Fe PO_(4),and Li||Li Ni_(0.8)Co_(0.1)Mn_(0.1)O_(2)cells.Overall,the synergistic influence of nanofiber morphology and enriched oxygen vacancy structure of fillers on electrochemical properties of composite GPEs is comprehensively investigated,thus,it is anticipated to shed new light on designing high-performance GPEs LMBs. 展开更多
关键词 Nanofibers fillers Oxygen vacancies Gel polymer electrolytes Lithium metal batteries
下载PDF
Borohydride Ammoniate Solid Electrolyte Design for All-Solid-State Mg Batteries 被引量:1
17
作者 Yuepeng Pang Zhengfang Nie +5 位作者 Fen Xu Lixian Sun Junhe Yang Dalin Sun Fang Fang Shiyou Zheng 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期100-106,共7页
Searching for novel solid electrolytes is of great importance and challenge for all-solid-state Mg batteries.In this work,we develop an amorphous Mg borohydride ammoniate,Mg(BH_(4))_(2)·2NH_(3),as a solid Mg elec... Searching for novel solid electrolytes is of great importance and challenge for all-solid-state Mg batteries.In this work,we develop an amorphous Mg borohydride ammoniate,Mg(BH_(4))_(2)·2NH_(3),as a solid Mg electrolyte that prepared by a NH_(3)redistribution between 3D framework-γ-Mg(BH_(4))_(2)and Mg(BH_(4))_(2)·6NH_(3).Amorphous Mg(BH_(4))_(2)·2NH_(3)exhibits a high Mg-ion conductivity of 5×10^(-4)S cm^(-1)at 75℃,which is attributed to the fast migration of abundant Mg vacancies according to the theoretical calculations.Moreover,amorphous Mg(BH_(4))_(2)·2NH_(3)shows an apparent electrochemical stability window of 0-1.4 V with the help of in-situ formed interphases,which can prevent further side reactions without hindering the Mg-ion transfer.Based on the above superiorities,amorphous Mg(BH_(4))_(2)·2NH_(3)enables the stable cycling of all-solid-state Mg cells,as the critical current density reaches 3.2 mA cm^(-2)for Mg symmetrical cells and the reversible specific capacity reaches 141 mAh g^(-1)with a coulombic efficiency of 91.7%(first cycle)for Mg||TiS_(2)cells. 展开更多
关键词 all-solid-state Mg batteries amorphization Mg borohydride ammoniate Mg vacancy migration solid electrolyte
下载PDF
Rationally designing electrolyte additives for highly improving cyclability of LiNi_(0.5)Mn_(1.5)O_(4)/Graphite cells 被引量:1
18
作者 Zhiyong Xia Kuan Zhou +8 位作者 Xiaoyan Lin Zhangyating Xie Qiurong Chen Xiaoqing Li Jie Cai Suli Li Hai Wang Mengqing Xu Weishan Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期266-275,共10页
High voltage is necessary for high energy lithium-ion batteries but difficult to achieve because of the highly deteriorated cyclability of the batteries.A novel strategy is developed to extend cyclability of a high vo... High voltage is necessary for high energy lithium-ion batteries but difficult to achieve because of the highly deteriorated cyclability of the batteries.A novel strategy is developed to extend cyclability of a high voltage lithium-ion battery,LiNi_(0.5)Mn_(1.5)O_(4)/Graphite(LNMO/Graphite)cell,which emphasizes a rational design of an electrolyte additive that can effectively construct protective interphases on anode and cathode and highly eliminate the effect of hydrogen fluoride(HF).5-Trifluoromethylpyridine-trime thyl lithium borate(LTFMP-TMB),is synthesized,featuring with multi-functionalities.Its anion TFMPTMB-tends to be enriched on cathode and can be preferentially oxidized yielding TMB and radical TFMP-.Both TMB and radical TFMP can combine HF and thus eliminate the detrimental effect of HF on cathode,while the TMB dragged on cathode thus takes a preferential oxidation and constructs a protective cathode interphase.On the other hand,LTFMP-TMB is preferentially reduced on anode and constructs a protective anode interphase.Consequently,a small amount of LTFMP-TMB(0.2%)in 1.0 M LiPF6in EC/DEC/EMC(3/2/5,wt%)results in a highly improved cyclability of LNMO/Graphite cell,with the capacity retention enhanced from 52%to 80%after 150 cycles at 0.5 C between 3.5 and 4.8 V.The as-developed strategy provides a model of designing electrolyte additives for improving cyclability of high voltage batteries. 展开更多
关键词 electrolyte additive Design and synthesis CYCLABILITY High voltage batteries Cathode and anode interphases
下载PDF
A dynamic database of solid-state electrolyte(DDSE)picturing all-solid-state batteries 被引量:1
19
作者 Fangling Yang Egon Campos dos Santos +5 位作者 Xue Jia Ryuhei Sato Kazuaki Kisu Yusuke Hashimoto Shin-ichi Orimo Hao Li 《Nano Materials Science》 EI CAS CSCD 2024年第2期256-262,共7页
All-solid-state batteries(ASSBs)are a class of safer and higher-energy-density materials compared to conventional devices,from which solid-state electrolytes(SSEs)are their essential components.To date,investigations ... All-solid-state batteries(ASSBs)are a class of safer and higher-energy-density materials compared to conventional devices,from which solid-state electrolytes(SSEs)are their essential components.To date,investigations to search for high ion-conducting solid-state electrolytes have attracted broad concern.However,obtaining SSEs with high ionic conductivity is challenging due to the complex structural information and the less-explored structure-performance relationship.To provide a solution to these challenges,developing a database containing typical SSEs from available experimental reports would be a new avenue to understand the structureperformance relationships and find out new design guidelines for reasonable SSEs.Herein,a dynamic experimental database containing>600 materials was developed in a wide range of temperatures(132.40–1261.60 K),including mono-and divalent cations(e.g.,Li^(+),Na^(+),K^(+),Ag^(+),Ca^(2+),Mg^(2+),and Zn^(2+))and various types of anions(e.g.,halide,hydride,sulfide,and oxide).Data-mining was conducted to explore the relationships among different variates(e.g.,transport ion,composition,activation energy,and conductivity).Overall,we expect that this database can provide essential guidelines for the design and development of high-performance SSEs in ASSB applications.This database is dynamically updated,which can be accessed via our open-source online system. 展开更多
关键词 Solid-state electrolyte(SSE) All-solid-state battery(ASSB) Ionic conductivity Dynamic database Machine learning
下载PDF
Electrolyte engineering for optimizing anode/electrolyte interface towards superior aqueous zinc-ion batteries:A review
20
作者 Hua-ming YU Dong-ping CHEN +6 位作者 Li-jin ZHANG Shao-zhen HUANG Liang-jun ZHOU Gui-chao KUANG Wei-feng WEI Li-bao CHEN Yue-jiao CHEN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第10期3118-3150,共33页
Aqueous zinc-ion batteries(AZIBs) are promising candidates for the large-scale energy storage systems due to their high intrinsic safety,cost-effectiveness and environmental friendliness.However,issues such as dendrit... Aqueous zinc-ion batteries(AZIBs) are promising candidates for the large-scale energy storage systems due to their high intrinsic safety,cost-effectiveness and environmental friendliness.However,issues such as dendrite growth,hydrogen evolution reaction,and interfacial passivation occurring at the anode/electrolyte interface(AEI) have hindered their practical application.Constructing a stable AEI plays a key role in regulating zinc deposition and improving the cycle life of AZIBs.The fundamentals of AEI and the challenges faced by the Zn anode due to unstable interfaces are discussed.A comprehensive summary of electrolyte regulation strategies by electrolyte engineering to achieve a stable Zn anode is provided.The effectiveness evaluation techniques for stable AEI are also analyzed,including the interfacial chemistry and surface morphology evolution of the Zn anode.Finally,suggestions and perspectives for future research are offered about enabling a durable and stable AEI via electrolyte engineering,which may pave the way for developing high-performance AZIBs. 展开更多
关键词 aqueous zinc-ion battery anode/electrolyte interface zinc anode aqueous electrolyte electrolyte engineering electrolyte additives
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部