期刊文献+
共找到18,058篇文章
< 1 2 250 >
每页显示 20 50 100
Advancements and Challenges in Organic–Inorganic Composite Solid Electrolytes for All‑Solid‑State Lithium Batteries
1
作者 Xueyan Zhang Shichao Cheng +4 位作者 Chuankai Fu Geping Yin Liguang Wang Yongmin Wu Hua Huo 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期46-97,共52页
To address the limitations of contemporary lithium-ion batteries,particularly their low energy density and safety concerns,all-solid-state lithium batteries equipped with solid-state electrolytes have been identified ... To address the limitations of contemporary lithium-ion batteries,particularly their low energy density and safety concerns,all-solid-state lithium batteries equipped with solid-state electrolytes have been identified as an up-and-coming alternative.Among the various SEs,organic–inorganic composite solid electrolytes(OICSEs)that combine the advantages of both polymer and inorganic materials demonstrate promising potential for large-scale applications.However,OICSEs still face many challenges in practical applications,such as low ionic conductivity and poor interfacial stability,which severely limit their applications.This review provides a comprehensive overview of recent research advancements in OICSEs.Specifically,the influence of inorganic fillers on the main functional parameters of OICSEs,including ionic conductivity,Li+transfer number,mechanical strength,electrochemical stability,electronic conductivity,and thermal stability are systematically discussed.The lithium-ion conduction mechanism of OICSE is thoroughly analyzed and concluded from the microscopic perspective.Besides,the classic inorganic filler types,including both inert and active fillers,are categorized with special emphasis on the relationship between inorganic filler structure design and the electrochemical performance of OICSEs.Finally,the advanced characterization techniques relevant to OICSEs are summarized,and the challenges and perspectives on the future development of OICSEs are also highlighted for constructing superior ASSLBs. 展开更多
关键词 Composite solid electrolytes Inorganic filler Interfacial stability Li-ion conduction mechanism Characterization techniques
下载PDF
Alternative Strategy for Development of Dielectric Calcium Copper Titanate‑Based Electrolytes for Low‑Temperature Solid Oxide Fuel Cells
2
作者 Sajid Rauf Muhammad Bilal Hanif +8 位作者 Zuhra Tayyab Matej Veis MAKYousaf Shah Naveed Mushtaq Dmitry Medvedev Yibin Tian Chen Xia Martin Motola Bin Zhu 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期310-332,共23页
The development of low-temperature solid oxide fuel cells(LT-SOFCs)is of significant importance for realizing the widespread application of SOFCs.This has stimulated a substantial materials research effort in developi... The development of low-temperature solid oxide fuel cells(LT-SOFCs)is of significant importance for realizing the widespread application of SOFCs.This has stimulated a substantial materials research effort in developing high oxide-ion conductivity in the electrolyte layer of SOFCs.In this context,for the first time,a dielectric material,CaCu_(3)Ti_(4)O_(12)(CCTO)is designed for LT-SOFCs electrolyte application in this study.Both individual CCTO and its heterostructure materials with a p-type Ni_(0.8)Co_(0.15)Al_(0.05)LiO_(2−δ)(NCAL)semiconductor are evaluated as alternative electrolytes in LT-SOFC at 450–550℃.The single cell with the individual CCTO electrolyte exhibits a power output of approximately 263 mW cm^(-2) and an open-circuit voltage(OCV)of 0.95 V at 550℃,while the cell with the CCTO–NCAL heterostructure electrolyte capably delivers an improved power output of approximately 605 mW cm^(-2) along with a higher OCV over 1.0 V,which indicates the introduction of high hole-conducting NCAL into the CCTO could enhance the cell performance rather than inducing any potential short-circuiting risk.It is found that these promising outcomes are due to the interplay of the dielectric material,its structure,and overall properties that led to improve electrochemical mechanism in CCTO–NCAL.Furthermore,density functional theory calculations provide the detailed information about the electronic and structural properties of the CCTO and NCAL and their heterostructure CCTO–NCAL.Our study thus provides a new approach for developing new advanced electrolytes for LT-SOFCs. 展开更多
关键词 LT-SOFCs Dielectric CaCu_(3)Ti_(4)O_(12) Semiconductor Ni_(0.8)Co_(0.15)Al_(0.05)LiO_(2−δ) Ionic conductivity Heterostructure electrolyte
下载PDF
Recent research progress on quasi-solid-state electrolytes for dye-sensitized solar cells 被引量:1
3
作者 Asif Mahmood 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第6期686-692,共7页
Dye-sensitized solar cells (DSSCs) are the most promising, low cost and most extensively investigated solar cells. They are famous for their clean and efficient solar energy conversion. Nevertheless this, long-time ... Dye-sensitized solar cells (DSSCs) are the most promising, low cost and most extensively investigated solar cells. They are famous for their clean and efficient solar energy conversion. Nevertheless this, long-time sta- bility is still to be acquired. In recent years research on solid and quasi-solid state electrolytes is extensively in- creased. Various quasi-solid electrolytes, including composites polymer electrolytes, ionic liquid electrolytes, thermoplastic polymer electrolytes and thermosetting polymer electrolytes have been used. Performance and stability of a quasi-solid state electrolyte are between liquid and solid electrolytes. High photovoltaic performances of QS-DSSCs along better long-term stability can be obtained by designing and optimizing quasi-solid electrolytes. It is a prospective candidate for highly efficient and stable DSSCs. 展开更多
关键词 Dye-sensitized solar cells quasi-solid electrolytes Composites polymer electrolytes Ionic liquid electrolytes Thermoplastic polymer electrolytes and thermosetting polymer electrolytes
下载PDF
Unique double-layer solid electrolyte interphase formed with fluorinated ether-based electrolytes for high-voltage lithium metal batteries 被引量:2
4
作者 Ruo Wang Jiawei Li +11 位作者 Bing Han Qingrong Wang Ruohong Ke Tong Zhang Xiaohu Ao Guangzhao Zhang Zhongbo Liu Yunxian Qian Fangfang Pan Iseult Lynch Jun Wang Yonghong Deng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期532-542,I0012,共12页
Li metal batteries using high-voltage layered oxides cathodes are of particular interest due to their high energy density.However,they suffer from short lifespan and extreme safety concerns,which are attributed to the... Li metal batteries using high-voltage layered oxides cathodes are of particular interest due to their high energy density.However,they suffer from short lifespan and extreme safety concerns,which are attributed to the degradation of layered oxides and the decomposition of electrolyte at high voltage,as well as the high reactivity of metallic Li.The key is the development of stable electrolytes against both highvoltage cathodes and Li with the formation of robust interphase films on the surfaces.Herein,we report a highly fluorinated ether,1,1,1-trifluoro-2-[(2,2,2-trifluoroethoxy)methoxy]ethane(TTME),as a cosolvent,which not only functions as a diluent forming a localized high concentration electrolyte(LHCE),but also participates in the construction of the inner solvation structure.The TTME-based electrolyte is stable itself at high voltage and induces the formation of a unique double-layer solid electrolyte interphase(SEI)film,which is embodied as one layer rich in crystalline structural components for enhanced mechanical strength and another amorphous layer with a higher concentration of organic components for enhanced flexibility.The Li||Cu cells display a noticeably high Coulombic efficiency of 99.28%after 300 cycles and Li symmetric cells maintain stable cycling more than 3200 h at 0.5 mA/cm^(2) and 1.0m Ah/cm^(2).In addition,lithium metal cells using LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) and Li CoO_(2) cathodes(both loadings~3.0 m Ah/cm^(2))realize capacity retentions of>85%over 240 cycles with a charge cut-off voltage of 4.4 V and 90%for 170 cycles with a charge cut-off voltage of 4.5 V,respectively.This study offers a bifunctional ether-based electrolyte solvent beneficial for high-voltage Li metal batteries. 展开更多
关键词 Lithium metal batteries High-voltage layered oxides Fluorinated ether-based electrolytes Solid electrolyte interphase Cathode electrolyte interphase
下载PDF
Trend of Developing Aqueous Liquid and Gel Electrolytes for Sustainable,Safe,and High‑Performance Li‑Ion Batteries 被引量:2
5
作者 Donghwan Ji Jaeyun Kim 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期17-34,共18页
Current lithium-ion batteries(LIBs)rely on organic liquid electrolytes that pose significant risks due to their flammability and toxicity.The potential for environmental pollution and explosions resulting from battery... Current lithium-ion batteries(LIBs)rely on organic liquid electrolytes that pose significant risks due to their flammability and toxicity.The potential for environmental pollution and explosions resulting from battery damage or fracture is a critical concern.Water-based(aqueous)electrolytes have been receiving attention as an alternative to organic electrolytes.However,a narrow electrochemicalstability window,water decomposition,and the consequent low battery operating voltage and energy density hinder the practical use of aqueous electrolytes.Therefore,developing novel aqueous electrolytes for sustainable,safe,high-performance LIBs remains challenging.This Review first commences by summarizing the roles and requirements of electrolytes–separators and then delineates the progression of aqueous electrolytes for LIBs,encompassing aqueous liquid and gel electrolyte development trends along with detailed principles of the electrolytes.These aqueous electrolytes are progressed based on strategies using superconcentrated salts,concentrated diluents,polymer additives,polymer networks,and artificial passivation layers,which are used for suppressing water decomposition and widening the electrochemical stability window of water of the electrolytes.In addition,this Review discusses potential strategies for the implementation of aqueous Li-metal batteries with improved electrolyte–electrode interfaces.A comprehensive understanding of each strategy in the aqueous system will assist in the design of an aqueous electrolyte and the development of sustainable and safe high-performance batteries. 展开更多
关键词 Lithium-ion battery(LIB) Aqueous electrolyte Gel electrolyte Electrochemical stability window Li dendrite
下载PDF
Challenges in Li-ion battery high-voltage technology and recent advances in high-voltage electrolytes 被引量:1
6
作者 Jianguo Liu Baohui Li +2 位作者 Jinghang Cao Xiao Xing Gan Cui 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期73-98,共26页
The electrolyte directly contacts the essential parts of a lithium-ion battery,and as a result,the electrochemical properties of the electrolyte have a significant impact on the voltage platform,charge discharge capac... The electrolyte directly contacts the essential parts of a lithium-ion battery,and as a result,the electrochemical properties of the electrolyte have a significant impact on the voltage platform,charge discharge capacity,energy density,service life,and rate discharge performance.By raising the voltage at the charge/discharge plateau,the energy density of the battery is increased.However,this causes transition metal dissolution,irreversible phase changes of the cathode active material,and parasitic electrolyte oxidation reactions.This article presents an overview of these concerns to provide a clear explanation of the issues involved in the development of electrolytes for high-voltage lithium-ion batteries.Additionally,solidstate electrolytes enable various applications and will likely have an impact on the development of batteries with high energy densities.It is necessary to improve the high-voltage performance of electrolytes by creating solvents with high thermal stabilities and high voltage resistance and additives with superior film forming performance,multifunctional capabilities,and stable lithium salts.To offer suggestions for the future development of high-energy lithium-ion batteries,we conclude by offering our own opinions and insights on the current development of lithium-ion batteries. 展开更多
关键词 Lithium-ion battery High voltage electrolyte additive Solid electrolyte
下载PDF
Asymmetric Electrolytes Design for Aqueous Multivalent Metal Ion Batteries 被引量:1
7
作者 Xiaochen Yang Xinyu Wang +2 位作者 Yue Xiang Longtao Ma Wei Huang 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期227-253,共27页
With the rapid development of portable electronics and electric road vehicles,high-energy-density batteries have been becoming front-burner issues.Traditionally,homogeneous electrolyte cannot simultaneously meet diame... With the rapid development of portable electronics and electric road vehicles,high-energy-density batteries have been becoming front-burner issues.Traditionally,homogeneous electrolyte cannot simultaneously meet diametrically opposed demands of high-potential cathode and low-potential anode,which are essential for high-voltage batteries.Meanwhile,homogeneous electrolyte is difficult to achieve bi-or multi-functions to meet different requirements of electrodes.In comparison,the asymmetric electrolyte with bi-or multi-layer disparate components can satisfy distinct requirements by playing different roles of each electrolyte layer and meanwhile compensates weakness of individual electrolyte.Consequently,the asymmetric electrolyte can not only suppress by-product sedimentation and continuous electrolyte decomposition at the anode while preserving active substances at the cathode for high-voltage batteries with long cyclic lifespan.In this review,we comprehensively divide asymmetric electrolytes into three categories:decoupled liquid-state electrolytes,bi-phase solid/liquid electrolytes and decoupled asymmetric solid-state electrolytes.The design principles,reaction mechanism and mutual compatibility are also studied,respectively.Finally,we provide a comprehensive vision for the simplification of structure to reduce costs and increase device energy density,and the optimization of solvation structure at anolyte/catholyte interface to realize fast ion transport kinetics. 展开更多
关键词 Asymmetric electrolyte Aqueous multivalent metal ion batteries Electrochemical stability windows electrolyte interface
下载PDF
A high-flash-point quasi-solid polymer electrolyte for stable nickel-rich lithium metal batteries
8
作者 Yu-Kun Liu Xue-Yan Huang +11 位作者 Jun-Dong Zhang Wei-Jin Kong Juan Du Ximin Zhai Xiaofe Bie Huanli Sun Hao Zhang Chong Yan Xuechun Hao Lizhen Fan Ai-Bing Chen Chen-Zi Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第12期149-158,共10页
In the exploration of next-generation high-energy–density batteries,lithium metal is regarded as an ideal candidate for anode materials.However,lithium metal batteries (LMBs) face challenges in practical applications... In the exploration of next-generation high-energy–density batteries,lithium metal is regarded as an ideal candidate for anode materials.However,lithium metal batteries (LMBs) face challenges in practical applications due to the risks associated with organic liquid electrolytes,among which their low flash points are one of the major safety concerns.The adoption of high flash point quasi-solid polymer electrolytes(QSPE) that is compatible with the lithium metal anode and high-voltage cathode is therefore a promising strategy for exploring high-performance and high-safety LMBs.Herein,we employed the in-situ polymerization of poly (epoxidized soya fatty acid Bu esters-isooctyl acrylate-ditrimethylolpropane tetraacrylate)(PEID) to gel the liquid electrolyte that formed a PEID-based QSPE (PEID-QSPE).The flash point of PEID-QSPE rises from 25 to 82℃ after gelation,contributing to enhanced safety of the battery at elevated temperatures,whereas the electrochemical window increases to 4.9 V.Moreover,the three-dimensional polymer framework of PEID-QSPE is validated to facilitate the uniform growth of the solid electrolyte interphase on the anode,thereby improving the cycling stability of the battery.By employing PEID-QSPE,the Li|LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2) cell achieved long-term cycling stability (Coulombic efficiency,99.8%;>200 cycles at 0.1 C) even with a high cathode loading (~5 mg cm^(-2)) and an ultrathin Li(~50μm).This electrolyte is expected to afford inspiring insights for the development of safe and long-term cyclability LMBs. 展开更多
关键词 Solid-state batteries Lithium metal anodes quasi-solid polymer electrolytes High flash points Cross-linking polymerization
下载PDF
How Does Stacking Pressure Affect the Performance of Solid Electrolytes and All-Solid-State Lithium Metal Batteries? 被引量:2
9
作者 Junwu Sang Bin Tang +3 位作者 Yong Qiu Yongzheng Fang Kecheng Pan Zhen Zhou 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第4期93-98,共6页
All-solid-state lithium metal batteries(ASSLMBs)with solid electrolytes(SEs)have emerged as a promising alternative to liquid electrolyte-based Li-ion batteries due to their higher energy density and safety.However,si... All-solid-state lithium metal batteries(ASSLMBs)with solid electrolytes(SEs)have emerged as a promising alternative to liquid electrolyte-based Li-ion batteries due to their higher energy density and safety.However,since ASSLMBs lack the wetting properties of liquid electrolytes,they require stacking pressure to prevent contact loss between electrodes and SEs.Though previous studies showed that stacking pressure could impact certain performance aspects,a comprehensive investigation into the effects of stacking pressure has not been conducted.To address this gap,we utilized the Li_(6)PS_(5)Cl solid electrolyte as a reference and investigated the effects of stacking pressures on the performance of SEs and ASSLMBs.We also developed models to explain the underlying origin of these effects and predict battery performance,such as ionic conductivity and critical current density.Our results demonstrated that an appropriate stacking pressure is necessary to achieve optimal performance,and each step of applying pressure requires a specific pressure value.These findings can help explain discrepancies in the literature and provide guidance to establish standardized testing conditions and reporting benchmarks for ASSLMBs.Overall,this study contributes to the understanding of the impact of stacking pressure on the performance of ASSLMBs and highlights the importance of careful pressure optimization for optimal battery performance. 展开更多
关键词 critical current density solid electrolyte solid-state lithium metal batteries stacking pressure
下载PDF
An intrinsically self-healing and anti-freezing molecular chains induced polyacrylamide-based hydrogel electrolytes for zinc manganese dioxide batteries 被引量:1
10
作者 Haiyang Liao Wenzhao Zhong +8 位作者 Chen Li Jieling Han Xiao Sun Xinhui Xia Ting Li Abolhassan Noori Mir F.Mousavi Xin Liu Yongqi Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期565-578,I0013,共15页
The anti-freezing strategy of hydrogels and their self-healing structure are often contradictory,it is vital to break through the molecular structure to design and construct hydrogels with intrinsic anti-freezing/self... The anti-freezing strategy of hydrogels and their self-healing structure are often contradictory,it is vital to break through the molecular structure to design and construct hydrogels with intrinsic anti-freezing/self-healing for meeting the rapid development of flexible and wearable devices in diverse service conditions.Herein,we design a new hydrogel electrolyte(AF/SH-Hydrogel)with intrinsic anti-freezing/self-healing capabilities by introducing ethylene glycol molecules,dynamic chemical bonding(disulfide bond),and supramolecular interaction(multi-hydrogen bond)into the polyacrylamide molecular chain.Thanks to the exceptional freeze resistance(84%capacity retention at-20℃)and intrinsic self-healing capabilities(95%capacity retention after 5 cutting/self-healing cycles),the obtained AF/SH-Hydrogel makes the zinc||manganese dioxide cell an economically feasible battery for the state-of-the-art applications.The Zn||AF/SH-Hydrogel||MnO_(2)device offers a near-theoretical specific capacity of 285 m A h g^(-1)at 0.1 A g^(-1)(Coulombic efficiency≈100%),as well as good self-healing capability and mechanical flexibility in an ice bath.This work provides insight that can be utilized to develop multifunctional hydrogel electrolytes for application in next generation of self-healable and freeze-resistance smart aqueous energy storage devices. 展开更多
关键词 Flexible aqueous battery Hydrogel electrolyte ANTI-FREEZING SELF-HEALING Dual-dynamic reversible bond
下载PDF
Overcoming the Na-ion conductivity bottleneck for the cost-competitive chloride solid electrolytes 被引量:1
11
作者 Lv Hu Hui Li +3 位作者 Fang Chen Yating Liu Jinzhu Wang Cheng Ma 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期1-8,I0001,共9页
Chloride solid electrolytes possess multiple advantages for the construction of safe,energy-dense allsolid-state sodium batteries,but presently the chlorides with sufficiently high cost-competitiveness for commerciali... Chloride solid electrolytes possess multiple advantages for the construction of safe,energy-dense allsolid-state sodium batteries,but presently the chlorides with sufficiently high cost-competitiveness for commercialization almost all exhibit low Na-ion conductivities of around 10^(-5)S cm^(-1)or lower.Here,we report a chloride solid electrolyte,Na_(2.7)ZFCl_(5.3)O_(0.7),which reaches a Na-ion conductivity of 2.29×10^(-4)S cm^(-1)at 25℃without involving overly expensive raw materials such as rare-earth chlorides or Na_(2)S.In addition to the efficient ion transport,Na_(2.7)ZrCl_(5.3)O_(0.7)also shows an excellent deformability surpassing that of the widely studied Na_(3)PS_(4),Na_(3)SbS_(4),and Na_(2)ZrCl_(6)solid electrolytes.The combination of these advantages allows the all-solid-state cell based on Na_(2.7)ZrCl_(5.3)O_(0.7)and NaCrO_(2)to realize stable room-temperature cycling at a much higher specific current than those based on other non-viscoelastic chloride solid electrolytes in literature(120 mA g^(-1)vs.12-55 mA g^(-1));after 100 cycles at such a high rate,the Na_(2.7)ZFCl_(5.3)O_(0.7)-based cell can still deliver a discharge capacity of 80 mAh g^(-1)at25℃. 展开更多
关键词 All-solid-state sodium batteries Ionic conductivities Solid electrolytes Chlorides High voltage stability
下载PDF
A new review of single-ion conducting polymer electrolytes in the light of ion transport mechanisms 被引量:1
12
作者 Yuqi Luo Lu Gao Weimin Kang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期543-556,I0012,共15页
With the depletion of fossil fuels and the demand for high-performance energy storage devices,solidstate lithium metal batteries have received widespread attention due to their high energy density and safety advantage... With the depletion of fossil fuels and the demand for high-performance energy storage devices,solidstate lithium metal batteries have received widespread attention due to their high energy density and safety advantages.Among them,the earliest developed organic solid-state polymer electrolyte has a promising future due to its advantages such as good mechanical flexibility,but its poor ion transport performance dramatically limits its performance improvement.Therefore,single-ion conducting polymer electrolytes(SICPEs)with high lithium-ion transport number,capable of improving the concentration polarization and inhibiting the growth of lithium dendrites,have been proposed,which provide a new direction for the further development of high-performance organic polymer electrolytes.In view of this,lithium ions transport mechanisms and design principles in SICPEs are summarized and discussed in this paper.The modification principles currently used can be categorized into the following three types:enhancement of lithium salt anion-polymer interactions,weakening of lithium salt anion-cation interactions,and modulation of lithium ion-polymer interactions.In addition,the advances in single-ion conductors of conventional and novel polymer electrolytes are summarized,and several typical highperformance single-ion conductors are enumerated and analyzed in what way they improve ionic conductivity,lithium ions mobility,and the ability to inhibit lithium dendrites.Finally,the advantages and design methodology of SICPEs are summarized again and the future directions are outlined. 展开更多
关键词 Lithium metal batteries Single-ion conductor Polymer electrolytes Ion transport mechanism Li-ion transport number
下载PDF
Regulation of Lithium-Ion Flux by Nanotopology Lithiophilic Boron-Oxygen Dipole in Solid Polymer Electrolytes for Lithium-Metal Batteries 被引量:1
13
作者 Manying Cui Hongyang Zhao +9 位作者 Yanyang Qin Shishi Zhang Ruxin Zhao Miao Zhang Wei Yu Guoxin Gao Xiaofei Hu Yaqiong Su Kai Xi Shujiang Ding 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第4期74-82,共9页
Inhomogeneous lithium-ion(Li^(+))deposition is one of the most crucial problems,which severely deteriorates the performance of solid-state lithium metal batteries(LMBs).Herein,we discovered that covalent organic frame... Inhomogeneous lithium-ion(Li^(+))deposition is one of the most crucial problems,which severely deteriorates the performance of solid-state lithium metal batteries(LMBs).Herein,we discovered that covalent organic framework(COF-1)with periodically arranged boron-oxygen dipole lithiophilic sites could directionally guide Li^(+)even deposition in asymmetric solid polymer electrolytes.This in situ prepared 3D cross-linked network Poly(ACMO-MBA)hybrid electrolyte simultaneously delivers outstanding ionic conductivity(1.02×10^(-3)S cm^(-1)at 30°C)and excellent mechanical property(3.5 MPa).The defined nanosized channel in COF-1 selectively conducts Li^(+)increasing Li^(+)transference number to 0.67.Besides,The COF-1 layer and Poly(ACMO-MBA)also participate in forming a boron-rich and nitrogen-rich solid electrolyte interface to further improve the interfacial stability.The Li‖Li symmetric cell exhibits remarkable cyclic stability over 1000 h.The Li‖NCM523 full cell also delivers an outstanding lifespan over 400 cycles.Moreover,the Li‖LiFePO_(4)full cell stably cycles with a capacity retention of 85%after 500 cycles.the Li‖LiFePO_(4)pouch full exhibits excellent safety performance under pierced and cut conditions.This work thereby further broadens and complements the application of COF materials in polymer electrolyte for dendrite-free and high-energy-density solid-state LMBs. 展开更多
关键词 covalent organic framework ion transport regulation lithium metal battery solid polymer electrolyte
下载PDF
Quasi-Solid-State Ion-Conducting Arrays Composite Electrolytes with Fast Ion Transport Vertical-Aligned Interfaces for All-Weather Practical Lithium-Metal Batteries 被引量:9
14
作者 Xinyang Li Yong Wang +9 位作者 Kai Xi Wei Yu Jie Feng Guoxin Gao Hu Wu Qiu Jiang Amr Abdelkader Weibo Hua Guiming Zhong Shujiang Ding 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第12期401-414,共14页
The rapid improvement in the gel polymer electrolytes(GPEs)with high ionic conductivity brought it closer to practical applications in solid-state Li-metal batteries.The combination of solvent and polymer enables quas... The rapid improvement in the gel polymer electrolytes(GPEs)with high ionic conductivity brought it closer to practical applications in solid-state Li-metal batteries.The combination of solvent and polymer enables quasi-liquid fast ion transport in the GPEs.However,different ion transport capacity between solvent and polymer will cause local nonuniform Li+distribution,leading to severe dendrite growth.In addition,the poor thermal stability of the solvent also limits the operating-temperature window of the electrolytes.Optimizing the ion transport environment and enhancing the thermal stability are two major challenges that hinder the application of GPEs.Here,a strategy by introducing ion-conducting arrays(ICA)is created by vertical-aligned montmorillonite into GPE.Rapid ion transport on the ICA was demonstrated by 6Li solid-state nuclear magnetic resonance and synchrotron X-ray diffraction,combined with computer simulations to visualize the transport process.Compared with conventional randomly dispersed fillers,ICA provides continuous interfaces to regulate the ion transport environment and enhances the tolerance of GPEs to extreme temperatures.Therefore,GPE/ICA exhibits high room-temperature ionic conductivity(1.08 mS cm^(−1))and long-term stable Li deposition/stripping cycles(>1000 h).As a final proof,Li||GPE/ICA||LiFePO_(4) cells exhibit excellent cycle performance at wide temperature range(from 0 to 60°C),which shows a promising path toward all-weather practical solid-state batteries. 展开更多
关键词 Solid-state batteries Composite electrolytes Vertical-aligned ion-conducting arrays Interfacial ion-conduction mechanism All-weather practical electrolyte design
下载PDF
Incombustible solid polymer electrolytes:A critical review and perspective
15
作者 Kai Wu Jin Tan +4 位作者 Zhenfang Liu Chenguang Bao Ao Li Qi Liu Baohua Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期264-281,I0007,共19页
Since the advent of the solid-state batteries,employing solid polymer electrolytes(SPEs)to replace routine flammable liquid electrolytes is regarded to be one of the most promising solutions in pursing highenergy-dens... Since the advent of the solid-state batteries,employing solid polymer electrolytes(SPEs)to replace routine flammable liquid electrolytes is regarded to be one of the most promising solutions in pursing highenergy-density battery systems.SPEs with superior thermal stability,good processability,and high mechanical modulus obtain increasing attentions.However,SPE-based batteries are not impenetrable due to their decomposition and combustibility under extreme conditions.Researchers believe incorporating appropriate flame-retardant additives/solvents/fragments into SPEs can intrinsically reduce their flammability to solve the battery safety issues.In this review,the recent research progress of incombustible SPEs,with special emphasis on flame-retardant structural design,is summarized.Specifically,a brief introduction of flame-retardant mechanism,evaluation index for safety of SPEs,and a detailed overview of the latest advances on diverse-types SPEs in various battery systems are highlighted.The deep insight into thermal ru naway process,the free-standing incombustible GPEs,and the ratio nal design of pouch cell structures may be the main directions to motivate revolutionary next-generation for safety batteries. 展开更多
关键词 Non-flammable electrolyte Solid polymer electrolyte High safety electrolyte Solid state electrolyte Solid state battery
下载PDF
Recent advances on quasi-solid-state electrolytes for supercapacitors 被引量:3
16
作者 Murilo M.Amaral Raissa Venâncio +1 位作者 Alfredo C.Peterlevitz Hudson Zanin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第4期697-717,共21页
Solid-state and quasi-solid-state electrolytes have been attracting the scientific community’s attention in the last decade. These electrolytes provide significant advantages, such as the absence of leakage and separ... Solid-state and quasi-solid-state electrolytes have been attracting the scientific community’s attention in the last decade. These electrolytes provide significant advantages, such as the absence of leakage and separators for devices and safety for users. They also allow the assembly of stretchable and bendable supercapacitors. Comparing solid-state to quasi-solid-states, the last provides the most significant energy and power densities due to the better ionic conductivity. Our goal here is to present recent advances on quasisolid-state electrolytes, including gel-polymer electrolytes. We reviewed the most recent literature on quasi-solid-state electrolytes with different solvents for supercapacitors. Organic quasi-solid-state electrolytes need greater attention once they reach an excellent working voltage window greater than 2.5 V.Meanwhile, aqueous-based solid-state electrolytes have a restricted voltage window to less than 2 V. On the other hand, they are easier to handle, provide greater ionic conductivity and capacitance. Recent water-in-salt polymer-electrolytes have shown stability as great as 2 V encouraging further development in aqueous-based quasi-solid-state electrolytes. Moreover, hydrophilic conductive polymers have great commercial appeal for bendable devices. Thus, these electrolytes can be employed in flexible and bendable devices, favoring the improvement of portable electronics and wearable devices(376 references were evaluated and summarized here). 展开更多
关键词 quasi-solid-state electrolyte Gel-polymer electrolyte Flexible supercapacitor Wearables
下载PDF
A"Concentrated lonogel-in-Ceramic"Silanization Composite Electrolyte with Superior Bulk Conductivity and Low Interfacial Resistance for Quasi-Solid-State Li Metal Batteries
17
作者 Wangshu Hou Zongyuan Chen +4 位作者 Shengxian Wang Fengkun Wei Yanfang Zhai Ning Hu Shufeng Song 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第5期20-28,共9页
The ideal composite electrolyte for the pursued safe and high-energy-density lithium metal batteries(LMBs)is expected to demonstrate peculiarity of superior bulk conductivity,low interfacial resistances,and good compa... The ideal composite electrolyte for the pursued safe and high-energy-density lithium metal batteries(LMBs)is expected to demonstrate peculiarity of superior bulk conductivity,low interfacial resistances,and good compatibility against both Li-metal anode and high-voltage cathode.There is no composite electrolyte to synchronously meet all these requirements yet,and the battery performance is inhibited by the absence of effective electrolyte design.Here we report a unique"concentrated ionogel-in-ceramic"silanization composite electrolyte(SCE)and validate an electrolyte design strategy based on the coupling of high-content silane-conditioning garnet and concentrated ionogel that builds well-percolated Li+transport pathways and tackles the interface issues to respond all the aforementioned requirements.It is revealed that the silane conditioning enables the uniform dispersion of garnet nanoparticles at high content(70 wt%)and forms mixed-lithiophobic-conductive LiF-Li3N solid electrolyte interphase.Notably,the yielding SCE delivers an ultrahigh ionic conductivity of 1.76 X 10^(-3)S cm^(-1)at 25℃,an extremely low Li-metal/electrolyte interfacial area-specific resistance of 13Ωcm^(2),and a distinctly excellent long-term 1200 cycling without any capacity decay in 4.3 V Li‖LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2)(NCM523)quasi-solid-state LMB.This composite electrolyte design strategy can be extended to other quasi-/solid-state LMBs. 展开更多
关键词 composite electrolyte concentrated ionogel-in-ceramic interfacial resistance SILANE solid electrolyte interphase
下载PDF
Recent progress in ether-based electrolytes for high-voltage lithium metal batteries
18
作者 Hai-peng ZHU Qiang-feng ZHANG +4 位作者 Zhao CHEN Zi-yu PENG Lin MEI Chun-xiao ZHANG Wei-feng WEI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第11期3452-3470,共19页
Ether-based solvents generally show better affinity for lithium metal,and thus ether-based electrolytes(EBEs)are more inclined to form a uniform and thin solid electrolyte interface(SEI),ensuring the long cycle stabil... Ether-based solvents generally show better affinity for lithium metal,and thus ether-based electrolytes(EBEs)are more inclined to form a uniform and thin solid electrolyte interface(SEI),ensuring the long cycle stability of the lithium metal batteries(LMBs).Nonetheless,EBEs still face the challenge of oxidative decomposition under high voltage,which will corrode the structure of cathodes,destroy the stability of the electrode−electrolyte interface,and even cause safety risks.Herein,the types and challenges of EBEs are reviewed,the strategies for improving the high voltage stability of EBEs and constructing stable electrode−electrolyte interfaces are discussed in detail.Finally,the future perspectives and potential directions for composition optimization of EBEs and electrolyte−electrode interface regulation of high-voltage LMBs are explored. 展开更多
关键词 ether-based electrolyte lithium metal batteries high voltage solvation structure electrode−electrolyte interfaces
下载PDF
Effect of low concentration electrolytes on the formation and corrosion resistance of PEO coatings on AM50 magnesium alloy
19
作者 Peng Xie Carsten Blawert +4 位作者 Maria Serdechnova Natalia Konchakova Tatsiana Shulha Ting Wu Mikhail L.Zheludkevich 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1386-1405,共20页
In this paper,the formation process,morphology,and electrochemical performance of PEO coatings on AM50 magnesium alloy prepared in low concentration phosphate,aluminate,and phosphate-aluminate electrolytes were system... In this paper,the formation process,morphology,and electrochemical performance of PEO coatings on AM50 magnesium alloy prepared in low concentration phosphate,aluminate,and phosphate-aluminate electrolytes were systematically studied.The results show that the coatings prepared from the phosphate electrolytes have a higher thickness and better corrosion resistance properties compared to the other electrolytes.The coatings prepared from low concentration phosphate-aluminate mixed electrolytes have slightly thinner thickness,a similar coating structure and an order of magnitude lower value of electrochemical impedance compared with phosphate electrolyte coatings.The Coatings prepared from low concentration aluminate electrolytes have the lowest thickness and the worst corrosion resistance properties which gets close to corrosion behavior of the bare AM50 under the same test conditions.Considering application,coatings prepared from single low concentration phosphate electrolytes and low concentration phosphate-aluminate electrolytes have greater potential than single low concentration aluminate coatings.However,reducing the electrolyte concentrations of coating forming ions too much has negative influence on the coating growth rate. 展开更多
关键词 Plasma electrolytic oxidation Low concentration electrolytes Corrosion resistance AM50 magnesium alloy
下载PDF
Ferroelectric Ceramic Materials Enable High-Performance Organic-Inorganic Composite Electrolytes in Solid-State Lithium Metal Batteries
20
作者 马静媛 黄昱力 +5 位作者 周晗洁 王媛媛 李建刚 禹习谦 李泓 李妍 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第7期176-180,共5页
Compared to commercial lithium-ion batteries, all-solid-state batteries can greatly increase the energy density, safety, and cycle life of batteries. The development of solid-state electrolyte with high lithium-ion co... Compared to commercial lithium-ion batteries, all-solid-state batteries can greatly increase the energy density, safety, and cycle life of batteries. The development of solid-state electrolyte with high lithium-ion conductivity and wide electrochemical window is the key for all-solid-state batteries. In this work, we report on the achievement of high ionic conductivity in the PAN/LiClO_(4)/BaTiO_(3) composite solid electrolyte (CSE) prepared by solution casting method. Our experimental results show that the PAN-based composite polymer electrolyte with 5 wt% BaTiO_(3) possesses a high room-temperature lithium-ion conductivity (9.85 × 10^(−4) S⋅cm^(−1)), high lithium-ion transfer number (0.63), wide electrochemical window (4.9 V vs Li+/Li). The Li|Li symmetric battery assembled with 5 wt% BaTiO_(3) can be stably circulated for 800 h at 0.1 mA⋅cm^(−2), and the LiFePO_(4)|CSE|Li battery maintains a capacity retention of 86.2% after 50 cycles at a rate of 0.3 C. The influence of BaTiO_(3) ceramic powder on the properties of PAN-based polymer electrolytes is analyzed. Our results provide a new avenue for future research in the all-solid-state lithium battery technology. 展开更多
关键词 battery LITHIUM electrolytE
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部