Solid polymer electrolytes(SPEs)are urgently required to achieve practical solid-state lithium metal batteries(LMBs)and lithium-ion batteries(LIBs),Herein,we proposed a mechanism for modulating interfacial conduction ...Solid polymer electrolytes(SPEs)are urgently required to achieve practical solid-state lithium metal batteries(LMBs)and lithium-ion batteries(LIBs),Herein,we proposed a mechanism for modulating interfacial conduction and anode interfaces in high-concentration SPEs by LiDFBOP.Optimized electrolyte exhibits superior ionic conductivity and remarkable interface compatibility with salt-rich clusters:(1)polymer-plastic crystal electrolyte(P-PCE,TPU-SN matrix)dissociates ion pairs to facilitate Li+transport in the electrolyte and regulates Li^(+)diffusion in the SEI.The crosslinking structure of the matrix compensates for the loss of mechanical strength at high-salt concentrations;(2)dual-anion TFSI^(-)_(n)-DFBOP^(-)_(m)in the Li^(+)solvation sheath facilitates facile Li^(+)desolvation and formation of salt-rich clusters and is conducive to the formation of Li conductive segments of TPU-SN matrix;(3)theoretical calculations indicate that the decomposition products of LiDFBOP form SEI with lower binding energy with LiF in the SN system,thereby enhancing the interfacial electrochemical redox kinetics of SPE and creating a solid interface SEI layer rich in LiF.As a result,the optimized electrolyte exhibits an excellent ionic conductivity of9.31×10^(-4)S cm^(-1)at 30℃and a broadened electrochemical stability up to 4.73 V.The designed electrolyte effectively prevents the formation of Li dendrites in Li symmetric cells for over 6500 h at0.1 mA cm^(-2).The specific Li-Si alloy-solid state half-cell capacity shows 711.6 mAh g^(-1)after 60 cycles at 0.3 A g^(-1).Excellent rate performance and cycling stability are achieved for these solid-state batteries with Li-Si alloy anodes and NCM 811 cathodes.NCM 811‖Prelithiated silicon-based anode solid-state cell delivers a discharge capacity of 195.55 mAh g^(-1)and a capacity retention of 97.8%after 120 cycles.NCM 811‖Li solid-state cell also delivers capacity retention of 84.2%after 450 cycles.展开更多
Aluminum-selenium(Al-Se)batteries,which possess a high theoretical specific capacity of 1357 mA h g^(-1),represent a promising energy storage technology.However,they suffer from significant attenuation of capacity and...Aluminum-selenium(Al-Se)batteries,which possess a high theoretical specific capacity of 1357 mA h g^(-1),represent a promising energy storage technology.However,they suffer from significant attenuation of capacity and low cycle life due to the shuttle effect.To mitigate the shuttle effect induced by soluble selenium chloroaluminate compound that tends to migrate towards the negative electrode,a quasi-solid-state Al-Se battery was fabricated through the synthesis of a multi-aperture structure quasisolid-state electrolyte(MOF@GPE)based on metal-organic framework(MOF)material and gel-polymer electrolyte(GPE).The high ionic conductivity(1.13×10^(-3)S cm^(-1))of MOF@GPE at room temperature,coupled with its wide electrochemical stability window(2.45 V),can facilitate ion transport kinetics and enhance the electrochemical performance of Al-Se batteries.The MOF@GPE-based quasi-solidstate Al-Se batteries exhibit outstanding long-life cycling stability,delivering a high specific discharge capacity of 548 mA h g^(-1)with a maintained discharge specific capacity of 345 mA h g^(-1)after 500 cycles at a current density of 200 mA g^(-1).The stable ion transmission and high ion transport kinetics in MOF@GPE can be attributed to the stable structure and permeable channel of MOF,which effectively captures the soluble selenium chloroaluminate compound and further restrains the shuttle effect,resulting in improved cycling performance.展开更多
The development and application of high-capacity energy storage has been crucial to the global transition from fossil fuels to green energy.In this context,metal-organic frameworks(MOFs),with their unique 3D porous st...The development and application of high-capacity energy storage has been crucial to the global transition from fossil fuels to green energy.In this context,metal-organic frameworks(MOFs),with their unique 3D porous structure and tunable chemical functionality,have shown enormous potential as energy storage materials for accommodating or transporting electrochemically active ions.In this perspective,we specifically focus on the current status and prospects of anionic MOF-based quasi-solid-state-electrolytes(anionic MOF-QSSEs)for lithium metal batteries(LMBs).An overview of the definition,design,and properties of anionic MOF-QSSEs is provided,including recent advances in the understanding of their ion transport mechanism.To illustrate the advantages of using anionic MOF-QSSEs as electrolytes for LMBs,a thorough comparison between anionic MOF-QSSEs and other well-studied electrolyte systems is made.With these in-depth understandings,viable techniques for tuning the chemical and topological properties of anionic MOF-QSSEs to increase Li+conductivity are discussed.Beyond modulation of the MOFs matrix,we envisage that solvent and solid-electrolyte interphase design as well as emerging fabrication techniques will aid in the design and practical application of anionic MOF-QSSEs.展开更多
Solid-state and quasi-solid-state electrolytes have been attracting the scientific community’s attention in the last decade. These electrolytes provide significant advantages, such as the absence of leakage and separ...Solid-state and quasi-solid-state electrolytes have been attracting the scientific community’s attention in the last decade. These electrolytes provide significant advantages, such as the absence of leakage and separators for devices and safety for users. They also allow the assembly of stretchable and bendable supercapacitors. Comparing solid-state to quasi-solid-states, the last provides the most significant energy and power densities due to the better ionic conductivity. Our goal here is to present recent advances on quasisolid-state electrolytes, including gel-polymer electrolytes. We reviewed the most recent literature on quasi-solid-state electrolytes with different solvents for supercapacitors. Organic quasi-solid-state electrolytes need greater attention once they reach an excellent working voltage window greater than 2.5 V.Meanwhile, aqueous-based solid-state electrolytes have a restricted voltage window to less than 2 V. On the other hand, they are easier to handle, provide greater ionic conductivity and capacitance. Recent water-in-salt polymer-electrolytes have shown stability as great as 2 V encouraging further development in aqueous-based quasi-solid-state electrolytes. Moreover, hydrophilic conductive polymers have great commercial appeal for bendable devices. Thus, these electrolytes can be employed in flexible and bendable devices, favoring the improvement of portable electronics and wearable devices(376 references were evaluated and summarized here).展开更多
A novel transparent and soft quasi-solid-state electrolyte (QSSE) was proposed and fabricated, which consists of ionic liquid (PYR14TFSI) and nano-fumed silica. The QSSE demonstrates high ionic conductivity of 4.6...A novel transparent and soft quasi-solid-state electrolyte (QSSE) was proposed and fabricated, which consists of ionic liquid (PYR14TFSI) and nano-fumed silica. The QSSE demonstrates high ionic conductivity of 4.6× 10-4 S/cm at room temperature and wide electrochemical stability window of over 5 V. The Li-O2 battery using such quasi-solidstate electrolyte exhibits a low charge-discharge overpotential at the first cycle and excellent long-term cyclability over 500 cycles.展开更多
Dye-sensitized solar cells (DSSCs) are the most promising, low cost and most extensively investigated solar cells. They are famous for their clean and efficient solar energy conversion. Nevertheless this, long-time ...Dye-sensitized solar cells (DSSCs) are the most promising, low cost and most extensively investigated solar cells. They are famous for their clean and efficient solar energy conversion. Nevertheless this, long-time sta- bility is still to be acquired. In recent years research on solid and quasi-solid state electrolytes is extensively in- creased. Various quasi-solid electrolytes, including composites polymer electrolytes, ionic liquid electrolytes, thermoplastic polymer electrolytes and thermosetting polymer electrolytes have been used. Performance and stability of a quasi-solid state electrolyte are between liquid and solid electrolytes. High photovoltaic performances of QS-DSSCs along better long-term stability can be obtained by designing and optimizing quasi-solid electrolytes. It is a prospective candidate for highly efficient and stable DSSCs.展开更多
Polymer solid-state electrolytes(PSSEs)are promising for solving the safety problem of Lithium(Li)metal batteries(LMBs).However,PSSEs with low modulus in nature are prone to be penetrated by lithium dendrites,resultin...Polymer solid-state electrolytes(PSSEs)are promising for solving the safety problem of Lithium(Li)metal batteries(LMBs).However,PSSEs with low modulus in nature are prone to be penetrated by lithium dendrites,resulting in short circuit of LMBs.Here,we design and prepare piezoelectric BaTiO_(3)doped polyacrylonitrile(PAN@BTO)quasi-solid-state electrolytes(PQSSEs)by electrostatic spinning method to suppress dendritic growth.The piezoelectric polymer electrolytes are squeezed by nucleation and growth processes of Li dendrites,which can generate a piezoelectric electric field to regulate the deposition of Li^(+)ions and eliminate lithium bud.Consequently,piezoelectric PAN@BTO PQSSEs enables highly stable Li plating/stripping cycling for over 2000 h at 0.15 mA/cm^(2)at room temperature(RT,25℃).Also,LiFePO_(4)|PAN@BTO|Li full cells demonstrate excellent cycle performance(136.9 mA·h/g and 78%retention after 600 cycles at 0.5 C)at RT.Moreover,LiFePO_(4)|PAN@BTO|Li battery show extremely high safety and can still work normally under high-speed impact(2 Hz,∼30 kPa).We construct an in-situ cell monitoring system and disclose that the mechanism of suppressed lithium dendrite is originated from the generation of opposite piezoelectric potential and the feedback speed of intermittent piezoelectric potential signals is extremely fast.展开更多
The stable operation of solid-state lithium metal batteries at low temperatures is plagued by severe restrictions from inferior electrolyte-electrode interface compatibility and increased energy barrier for Li^(+)migr...The stable operation of solid-state lithium metal batteries at low temperatures is plagued by severe restrictions from inferior electrolyte-electrode interface compatibility and increased energy barrier for Li^(+)migration.Herein,we prepare a dual-salt poly(tetrahydrofuran)-based electrolyte consisting of lithium hexafluorophosphate and lithium difluoro(oxalato)borate(LiDFOB).The Li-salt anions(DFOB−)not only accelerate the ring-opening polymerization of tetrahydrofuran,but also promote the formation of highly ion-conductive and sustainable interphases on Li metal anodes without sacrificing the Li^(+)conductivity of electrolytes,which is favorable for Li^(+)transport kinetics at low temperatures.Applications of this polymer electrolyte in Li||LiFePO_(4)cells show 82.3%capacity retention over 1000 cycles at 30℃and endow stable discharge capacity at−30℃.Remarkably,the Li||LiFePO4 cells retain 52%of their room-temperature capacity at−20℃and 0.1 C.This rational design of dual-salt polymer-based electrolytes may provide a new perspective for the stable operation of quasi-solid-state batteries at low temperatures.展开更多
The ideal composite electrolyte for the pursued safe and high-energy-density lithium metal batteries(LMBs)is expected to demonstrate peculiarity of superior bulk conductivity,low interfacial resistances,and good compa...The ideal composite electrolyte for the pursued safe and high-energy-density lithium metal batteries(LMBs)is expected to demonstrate peculiarity of superior bulk conductivity,low interfacial resistances,and good compatibility against both Li-metal anode and high-voltage cathode.There is no composite electrolyte to synchronously meet all these requirements yet,and the battery performance is inhibited by the absence of effective electrolyte design.Here we report a unique"concentrated ionogel-in-ceramic"silanization composite electrolyte(SCE)and validate an electrolyte design strategy based on the coupling of high-content silane-conditioning garnet and concentrated ionogel that builds well-percolated Li+transport pathways and tackles the interface issues to respond all the aforementioned requirements.It is revealed that the silane conditioning enables the uniform dispersion of garnet nanoparticles at high content(70 wt%)and forms mixed-lithiophobic-conductive LiF-Li3N solid electrolyte interphase.Notably,the yielding SCE delivers an ultrahigh ionic conductivity of 1.76 X 10^(-3)S cm^(-1)at 25℃,an extremely low Li-metal/electrolyte interfacial area-specific resistance of 13Ωcm^(2),and a distinctly excellent long-term 1200 cycling without any capacity decay in 4.3 V Li‖LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2)(NCM523)quasi-solid-state LMB.This composite electrolyte design strategy can be extended to other quasi-/solid-state LMBs.展开更多
Hydrogel-based quasi-solid-state electrolytes(Q-SSEs) swollen with electrolyte solutions are important components in stretchable supercapacitors and other wearable devices. This work fabricates a supertough, fatigue-r...Hydrogel-based quasi-solid-state electrolytes(Q-SSEs) swollen with electrolyte solutions are important components in stretchable supercapacitors and other wearable devices. This work fabricates a supertough, fatigue-resistant, and alkali-resistant multi-bond network(MBN) hydrogel aiming to be an alkaline Q-SSE. To synthesize the hydrogel, a 2-ureido-4[1H]-pyrimidone(UPy) motif is introduced into a poly(acrylic acid) polymer chain. The obtained MBN hydrogels with 75 wt% water content exhibit tensile strength as high as 2.47 MPa, which is enabled by the large energy dissipation ability originated from the dissociation of UPy dimers due to their high bond association energy. Owing to the high dimerization constant of UPy motifs, the dissociated UPy motifs are able to partially re-associate soon after being released from external forces, resulting in excellent fatigue-resistance. More importantly, the MBN hydrogels exhibit excellent alkali-resistance ability. The UPy Gel-10 swollen with 1 mol/L KOH display a tensile strength as high as ~1.0 MPa with elongation at break of ~550%. At the same time, they show ionic conductivity of ~17 m S/cm, which do not decline even when the hydrogels are stretched to 500% strain.The excellent mechanical property and ionic conductivity of the present hydrogels demonstrate potential application as a stretchable alkaline Q-SSE.展开更多
A solid-state electrolyte(SSE),which is a solid ionic conductor and electroninsulating material,is known to play a crucial role in adapting a lithium metal anode to a high-capacity cathode in a solid-state battery.Amo...A solid-state electrolyte(SSE),which is a solid ionic conductor and electroninsulating material,is known to play a crucial role in adapting a lithium metal anode to a high-capacity cathode in a solid-state battery.Among the various SSEs,the single Li-ion conductor has advantages in terms of enhancing the ion conductivity,eliminating interfacial side reactions,and broadening the electrochemical window.Covalent organic frameworks(COFs)are optimal platforms for achieving single Li-ion conduction behavior because of wellordered one-dimensional channels and precise chemical modification features.Herein,we study in depth three types of Li-carboxylate COFs(denoted LiOOC-COFn,n=1,2,and 3)as single Li-ion conducting SSEs.Benefiting from well-ordered directional ion channels,the single Li-ion conductor LiOOC-COF3 shows an exceptional ion conductivity of 1.36×10^(-5) S cm^(-1) at room temperature and a high transference number of 0.91.Moreover,it shows excellent electrochemical performance with long-term cycling,high-capacity output,and no dendrites in the quasi-solid-state organic battery,with the organic small molecule cyclohexanehexone(C_(6)O_(6))as the cathode and the Li metal as the anode,and enables effectively avoiding dissolution of the organic electrode by the liquid electrolyte.展开更多
Quasi-solid-state lithium metal battery is a promising candidate for next generation high energy density and high safety power supply.Despite intensive efforts on electrolytes,uncontrolled interfacial reactions on lit...Quasi-solid-state lithium metal battery is a promising candidate for next generation high energy density and high safety power supply.Despite intensive efforts on electrolytes,uncontrolled interfacial reactions on lithium with electrolyte and patchy interfacial contacts still hinder its practical process.Herein,we bring in rationally designed F contained groups into polymer skeleton via in-situ gelation for the first time to establish quasi-solid-state battery.This method achieves a capacity retention of 90%after 1000 cycles at 0.5C with LiFePO_(4)cathodes.The interface constructed by polymer skeleton and reaction with–CF_(3)lead to the predicted solid electrolyte interface species with high stability.Furthermore,we optimize molecular reactivity and interface stability with regulating F contained end groups in the polymer.Comparisons on different structures reveal that high performance solid stable lithium metal batteries rely on chemical modification as well as stable polymer skeleton,which is more critical to construct robust and steady SEI with uniform lithium deposition.New approach with functional groups regulation proposes a more stable cycling process with a capacity retention of 94.2%at 0.5C and 87.6%at 1C after 1000 cycles with LiFePO_(4) cathodes,providing new insights for the practical development of quasi-solid-state lithium metal battery.展开更多
Serving as a promising alternative to liquid electrolyte in the application of portable and wearable devices,gel polymer electrolytes(GPEs)are expected to obtain more preferable properties rather than just be satisfie...Serving as a promising alternative to liquid electrolyte in the application of portable and wearable devices,gel polymer electrolytes(GPEs)are expected to obtain more preferable properties rather than just be satisfied with the merits of high safety and deformability.Here,an easy-operated method is employed to fabricate cross-linked composite polymer membranes used for GPEs assisted by UV irradiation,in which N-doped carbon quantum dots(N-CQDs)and TiO2are introduced as photocatalysts and additives to improve the performances of GPEs.Specifically,N-CQDs participate as a cross-linker to construct the inner porous structure,and TiO2nanoparticles serve as a stabilizer to improve the electrochemical stability of GPEs under high voltage(3.5 V).The excellent thermal and mechanical stability of the membrane fabricated in this work guarantee the safety of the supercapacitors(SCs).This GPE based SC not only exhibits prominent rate performance(105%capacitance retention at the current density of 40A g^(-1))and cyclic stability(85%at 1 A g^(-1)under 3.5 V after 20,000 cycles),but also displays remarkable energy density(42.88 Wh kg^(-1))with high power density(19.3 k W kg^(-1)).Moreover,the superior rate and cycling performances of the as-prepared GPE based flexible SCs under flat and bending state confirm the feasibility of its application in flexible energy storage devices.展开更多
Conventional lithium-ion batteries(LIBs)with liquid electrolytes are challenged by their big safety concerns,particularly used in electric vehicles.All-solid-state batteries using solid-state electrolytes have been pr...Conventional lithium-ion batteries(LIBs)with liquid electrolytes are challenged by their big safety concerns,particularly used in electric vehicles.All-solid-state batteries using solid-state electrolytes have been proposed to significantly improve safety yet are impeded by poor interfacial solid–solid contact and fast interface degradation.As a compromising strategy,in situ solidification has been proposed in recent years to fabricate quasi-solid-state batteries,which have great advantages in constructing intimate interfaces and cost-effective mass manufacturing.In this work,quasi-solid-state pouch cells with high loading electrodes(≥3 m Ah cm^(-2))were fabricated via in situ solidification of poly(ethylene glycol)diacrylate-based polymer electrolytes(PEGDA-PEs).Both single-layer and multilayer quasi-solid-state pouch cells(2.0 Ah)have demonstrated stable electrochemical performance over500 cycles.The superb electrochemical stability is closely related to the formation of robust and compatible interphase,which successfully inhibits interfacial side reactions and prevents interfacial structural degradation.This work demonstrates that in situ solidification is a facile and cost-effective approach to fabricate quasi-solid-state pouch cells with both excellent electrochemical performance and safety.展开更多
Porous organic cages(POCs)with permanent porosity and excellent host–guest property hold great potentials in regulating ion transport behavior,yet their feasibility as solid-state electrolytes has never been testifie...Porous organic cages(POCs)with permanent porosity and excellent host–guest property hold great potentials in regulating ion transport behavior,yet their feasibility as solid-state electrolytes has never been testified in a practical battery.Herein,we design and fabricate a quasi-solid-state electrolyte(QSSE)based on a POC to enable the stable operation of Li-metal batteries(LMBs).Benefiting from the ordered channels and cavity-induced anion-trapping effect of POC,the resulting POC-based QSSE exhibits a high Li+transference number of 0.67 and a high ionic conductivity of 1.25×10^(−4) S cm^(−1) with a low activation energy of 0.17 eV.These allow for homogeneous Li deposition and highly reversible Li plating/stripping for over 2000 h.As a proof of concept,the LMB assembled with POC-based QSSE demonstrates extremely stable cycling performance with 85%capacity retention after 1000 cycles.Therefore,our work demonstrates the practical applicability of POC as SSEs for LMBs and could be extended to other energy-storage systems,such as Na and K batteries.展开更多
The practical applications of solid-state electrolytes in lithium-ion batteries(LIBs)are hindered by their low ionic conductivity and high interfacial resistance.Herein,an ethoxylated trimethylolpropane triacrylate ba...The practical applications of solid-state electrolytes in lithium-ion batteries(LIBs)are hindered by their low ionic conductivity and high interfacial resistance.Herein,an ethoxylated trimethylolpropane triacrylate based quasi-solid-state electrolyte(ETPTAQSSE)with a three-dimensional(3D)network is prepared by a one-step in-situ photopolymerization method.The 3D network is designed to overcome the contradiction between the plasticizer-related ionic conductivity and the thickness-dependent mechanical property of quasi-solid-state electrolytes.The ETPTA-QSSE achieves superb room-temperature ionic conductivity up to 4.55×10^(−3)S cm^(−1),a high lithium ion transference number of 0.57,along with a wide electrochemical window of 5.3 V(vs.Li+/Li),which outperforms most ever of the reported solid-state electrolytes.Owing to the robust network structure and the cathodeelectrolyte integrated electrode design,Li metal symmetrical cells show reduced interface resistance and reinforced electrode/electrolyte interface stability.When applying the ETPTA-QSSE in LiFePO_(4)||Li cells,the quasi-solid-state cell demonstrates an enhanced initial discharge capacity(155.5 mAh g^(−1)at 0.2 C)accompanied by a high average Coulombic efficiency of greater than 99.3%,offering capacity retention of 92%after 200 cycles.Accordingly,this work sheds light on the strategy of enhancing ionic conductivity and reducing interfacial resistance of quasi-solid-state electrolytes,which is promising for high-voltage LIBs.展开更多
Li metal batteries using high-voltage layered oxides cathodes are of particular interest due to their high energy density.However,they suffer from short lifespan and extreme safety concerns,which are attributed to the...Li metal batteries using high-voltage layered oxides cathodes are of particular interest due to their high energy density.However,they suffer from short lifespan and extreme safety concerns,which are attributed to the degradation of layered oxides and the decomposition of electrolyte at high voltage,as well as the high reactivity of metallic Li.The key is the development of stable electrolytes against both highvoltage cathodes and Li with the formation of robust interphase films on the surfaces.Herein,we report a highly fluorinated ether,1,1,1-trifluoro-2-[(2,2,2-trifluoroethoxy)methoxy]ethane(TTME),as a cosolvent,which not only functions as a diluent forming a localized high concentration electrolyte(LHCE),but also participates in the construction of the inner solvation structure.The TTME-based electrolyte is stable itself at high voltage and induces the formation of a unique double-layer solid electrolyte interphase(SEI)film,which is embodied as one layer rich in crystalline structural components for enhanced mechanical strength and another amorphous layer with a higher concentration of organic components for enhanced flexibility.The Li||Cu cells display a noticeably high Coulombic efficiency of 99.28%after 300 cycles and Li symmetric cells maintain stable cycling more than 3200 h at 0.5 mA/cm^(2) and 1.0m Ah/cm^(2).In addition,lithium metal cells using LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) and Li CoO_(2) cathodes(both loadings~3.0 m Ah/cm^(2))realize capacity retentions of>85%over 240 cycles with a charge cut-off voltage of 4.4 V and 90%for 170 cycles with a charge cut-off voltage of 4.5 V,respectively.This study offers a bifunctional ether-based electrolyte solvent beneficial for high-voltage Li metal batteries.展开更多
Current lithium-ion batteries(LIBs)rely on organic liquid electrolytes that pose significant risks due to their flammability and toxicity.The potential for environmental pollution and explosions resulting from battery...Current lithium-ion batteries(LIBs)rely on organic liquid electrolytes that pose significant risks due to their flammability and toxicity.The potential for environmental pollution and explosions resulting from battery damage or fracture is a critical concern.Water-based(aqueous)electrolytes have been receiving attention as an alternative to organic electrolytes.However,a narrow electrochemicalstability window,water decomposition,and the consequent low battery operating voltage and energy density hinder the practical use of aqueous electrolytes.Therefore,developing novel aqueous electrolytes for sustainable,safe,high-performance LIBs remains challenging.This Review first commences by summarizing the roles and requirements of electrolytes–separators and then delineates the progression of aqueous electrolytes for LIBs,encompassing aqueous liquid and gel electrolyte development trends along with detailed principles of the electrolytes.These aqueous electrolytes are progressed based on strategies using superconcentrated salts,concentrated diluents,polymer additives,polymer networks,and artificial passivation layers,which are used for suppressing water decomposition and widening the electrochemical stability window of water of the electrolytes.In addition,this Review discusses potential strategies for the implementation of aqueous Li-metal batteries with improved electrolyte–electrode interfaces.A comprehensive understanding of each strategy in the aqueous system will assist in the design of an aqueous electrolyte and the development of sustainable and safe high-performance batteries.展开更多
The electrolyte directly contacts the essential parts of a lithium-ion battery,and as a result,the electrochemical properties of the electrolyte have a significant impact on the voltage platform,charge discharge capac...The electrolyte directly contacts the essential parts of a lithium-ion battery,and as a result,the electrochemical properties of the electrolyte have a significant impact on the voltage platform,charge discharge capacity,energy density,service life,and rate discharge performance.By raising the voltage at the charge/discharge plateau,the energy density of the battery is increased.However,this causes transition metal dissolution,irreversible phase changes of the cathode active material,and parasitic electrolyte oxidation reactions.This article presents an overview of these concerns to provide a clear explanation of the issues involved in the development of electrolytes for high-voltage lithium-ion batteries.Additionally,solidstate electrolytes enable various applications and will likely have an impact on the development of batteries with high energy densities.It is necessary to improve the high-voltage performance of electrolytes by creating solvents with high thermal stabilities and high voltage resistance and additives with superior film forming performance,multifunctional capabilities,and stable lithium salts.To offer suggestions for the future development of high-energy lithium-ion batteries,we conclude by offering our own opinions and insights on the current development of lithium-ion batteries.展开更多
Electrolyte design holds the greatest opportunity for the development of batteries that are capable of sub-zero temperature operation.To get the most energy storage out of the battery at low temperatures,improvements ...Electrolyte design holds the greatest opportunity for the development of batteries that are capable of sub-zero temperature operation.To get the most energy storage out of the battery at low temperatures,improvements in electrolyte chemistry need to be coupled with optimized electrode materials and tailored electrolyte/electrode interphases.Herein,this review critically outlines electrolytes’limiting factors,including reduced ionic conductivity,large de-solvation energy,sluggish charge transfer,and slow Li-ion transportation across the electrolyte/electrode interphases,which affect the low-temperature performance of Li-metal batteries.Detailed theoretical derivations that explain the explicit influence of temperature on battery performance are presented to deepen understanding.Emerging improvement strategies from the aspects of electrolyte design and electrolyte/electrode interphase engineering are summarized and rigorously compared.Perspectives on future research are proposed to guide the ongoing exploration for better low-temperature Li-metal batteries.展开更多
基金the support from the National Natural Science Foundation of China(Grant No.22179006)supported by the Beijing Natural Science Foundation(2244101)+1 种基金the National Natural Science Foundation of China(Grant No.52072036)the SINOPEC project(223128)。
文摘Solid polymer electrolytes(SPEs)are urgently required to achieve practical solid-state lithium metal batteries(LMBs)and lithium-ion batteries(LIBs),Herein,we proposed a mechanism for modulating interfacial conduction and anode interfaces in high-concentration SPEs by LiDFBOP.Optimized electrolyte exhibits superior ionic conductivity and remarkable interface compatibility with salt-rich clusters:(1)polymer-plastic crystal electrolyte(P-PCE,TPU-SN matrix)dissociates ion pairs to facilitate Li+transport in the electrolyte and regulates Li^(+)diffusion in the SEI.The crosslinking structure of the matrix compensates for the loss of mechanical strength at high-salt concentrations;(2)dual-anion TFSI^(-)_(n)-DFBOP^(-)_(m)in the Li^(+)solvation sheath facilitates facile Li^(+)desolvation and formation of salt-rich clusters and is conducive to the formation of Li conductive segments of TPU-SN matrix;(3)theoretical calculations indicate that the decomposition products of LiDFBOP form SEI with lower binding energy with LiF in the SN system,thereby enhancing the interfacial electrochemical redox kinetics of SPE and creating a solid interface SEI layer rich in LiF.As a result,the optimized electrolyte exhibits an excellent ionic conductivity of9.31×10^(-4)S cm^(-1)at 30℃and a broadened electrochemical stability up to 4.73 V.The designed electrolyte effectively prevents the formation of Li dendrites in Li symmetric cells for over 6500 h at0.1 mA cm^(-2).The specific Li-Si alloy-solid state half-cell capacity shows 711.6 mAh g^(-1)after 60 cycles at 0.3 A g^(-1).Excellent rate performance and cycling stability are achieved for these solid-state batteries with Li-Si alloy anodes and NCM 811 cathodes.NCM 811‖Prelithiated silicon-based anode solid-state cell delivers a discharge capacity of 195.55 mAh g^(-1)and a capacity retention of 97.8%after 120 cycles.NCM 811‖Li solid-state cell also delivers capacity retention of 84.2%after 450 cycles.
基金supported by the National Natural Science Foundation of China(51874019 and 51725401)the China Postdoctoral Science Foundation(2020M680347 and 2021T140051)the Fundamental Research Funds for the Central Universities(FRFTP-20-045A1)。
文摘Aluminum-selenium(Al-Se)batteries,which possess a high theoretical specific capacity of 1357 mA h g^(-1),represent a promising energy storage technology.However,they suffer from significant attenuation of capacity and low cycle life due to the shuttle effect.To mitigate the shuttle effect induced by soluble selenium chloroaluminate compound that tends to migrate towards the negative electrode,a quasi-solid-state Al-Se battery was fabricated through the synthesis of a multi-aperture structure quasisolid-state electrolyte(MOF@GPE)based on metal-organic framework(MOF)material and gel-polymer electrolyte(GPE).The high ionic conductivity(1.13×10^(-3)S cm^(-1))of MOF@GPE at room temperature,coupled with its wide electrochemical stability window(2.45 V),can facilitate ion transport kinetics and enhance the electrochemical performance of Al-Se batteries.The MOF@GPE-based quasi-solidstate Al-Se batteries exhibit outstanding long-life cycling stability,delivering a high specific discharge capacity of 548 mA h g^(-1)with a maintained discharge specific capacity of 345 mA h g^(-1)after 500 cycles at a current density of 200 mA g^(-1).The stable ion transmission and high ion transport kinetics in MOF@GPE can be attributed to the stable structure and permeable channel of MOF,which effectively captures the soluble selenium chloroaluminate compound and further restrains the shuttle effect,resulting in improved cycling performance.
基金financially supported by the Scientific Research Startup Funds from Tsinghua Shenzhen International Graduate School。
文摘The development and application of high-capacity energy storage has been crucial to the global transition from fossil fuels to green energy.In this context,metal-organic frameworks(MOFs),with their unique 3D porous structure and tunable chemical functionality,have shown enormous potential as energy storage materials for accommodating or transporting electrochemically active ions.In this perspective,we specifically focus on the current status and prospects of anionic MOF-based quasi-solid-state-electrolytes(anionic MOF-QSSEs)for lithium metal batteries(LMBs).An overview of the definition,design,and properties of anionic MOF-QSSEs is provided,including recent advances in the understanding of their ion transport mechanism.To illustrate the advantages of using anionic MOF-QSSEs as electrolytes for LMBs,a thorough comparison between anionic MOF-QSSEs and other well-studied electrolyte systems is made.With these in-depth understandings,viable techniques for tuning the chemical and topological properties of anionic MOF-QSSEs to increase Li+conductivity are discussed.Beyond modulation of the MOFs matrix,we envisage that solvent and solid-electrolyte interphase design as well as emerging fabrication techniques will aid in the design and practical application of anionic MOF-QSSEs.
基金the funding agencies FAPESP(2014/02163-7,2017/11958-1,2020/14968-0)and CNPq(PQ-2 grant:Process 131234/2020-0&310544/2019-0)the funding from Shell and the importance of the support provided by the ANP(Brazil’s National Oil,Natural Gas,and Biofuels Agency)by the R&D levy regulation。
文摘Solid-state and quasi-solid-state electrolytes have been attracting the scientific community’s attention in the last decade. These electrolytes provide significant advantages, such as the absence of leakage and separators for devices and safety for users. They also allow the assembly of stretchable and bendable supercapacitors. Comparing solid-state to quasi-solid-states, the last provides the most significant energy and power densities due to the better ionic conductivity. Our goal here is to present recent advances on quasisolid-state electrolytes, including gel-polymer electrolytes. We reviewed the most recent literature on quasi-solid-state electrolytes with different solvents for supercapacitors. Organic quasi-solid-state electrolytes need greater attention once they reach an excellent working voltage window greater than 2.5 V.Meanwhile, aqueous-based solid-state electrolytes have a restricted voltage window to less than 2 V. On the other hand, they are easier to handle, provide greater ionic conductivity and capacitance. Recent water-in-salt polymer-electrolytes have shown stability as great as 2 V encouraging further development in aqueous-based quasi-solid-state electrolytes. Moreover, hydrophilic conductive polymers have great commercial appeal for bendable devices. Thus, these electrolytes can be employed in flexible and bendable devices, favoring the improvement of portable electronics and wearable devices(376 references were evaluated and summarized here).
基金Project supported by the National Key R&D Program of China(Grant Nos.2016YFB0100300 and 2016YFB0100100)the National Basic Research Program of China(Grant No.2014CB932300)+2 种基金the Beijing Municipal Science&Technology Commission,China(Grant No.D171100005517001)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA09010000)the National Natural Science Foundation of China(Grant No.51502334)
文摘A novel transparent and soft quasi-solid-state electrolyte (QSSE) was proposed and fabricated, which consists of ionic liquid (PYR14TFSI) and nano-fumed silica. The QSSE demonstrates high ionic conductivity of 4.6× 10-4 S/cm at room temperature and wide electrochemical stability window of over 5 V. The Li-O2 battery using such quasi-solidstate electrolyte exhibits a low charge-discharge overpotential at the first cycle and excellent long-term cyclability over 500 cycles.
文摘Dye-sensitized solar cells (DSSCs) are the most promising, low cost and most extensively investigated solar cells. They are famous for their clean and efficient solar energy conversion. Nevertheless this, long-time sta- bility is still to be acquired. In recent years research on solid and quasi-solid state electrolytes is extensively in- creased. Various quasi-solid electrolytes, including composites polymer electrolytes, ionic liquid electrolytes, thermoplastic polymer electrolytes and thermosetting polymer electrolytes have been used. Performance and stability of a quasi-solid state electrolyte are between liquid and solid electrolytes. High photovoltaic performances of QS-DSSCs along better long-term stability can be obtained by designing and optimizing quasi-solid electrolytes. It is a prospective candidate for highly efficient and stable DSSCs.
基金supported by the National Natural Science Foundation of China(Nos.51977185,51972277)Natural Science Foundation of Sichuan Province(No.2023NSFSC0441).
文摘Polymer solid-state electrolytes(PSSEs)are promising for solving the safety problem of Lithium(Li)metal batteries(LMBs).However,PSSEs with low modulus in nature are prone to be penetrated by lithium dendrites,resulting in short circuit of LMBs.Here,we design and prepare piezoelectric BaTiO_(3)doped polyacrylonitrile(PAN@BTO)quasi-solid-state electrolytes(PQSSEs)by electrostatic spinning method to suppress dendritic growth.The piezoelectric polymer electrolytes are squeezed by nucleation and growth processes of Li dendrites,which can generate a piezoelectric electric field to regulate the deposition of Li^(+)ions and eliminate lithium bud.Consequently,piezoelectric PAN@BTO PQSSEs enables highly stable Li plating/stripping cycling for over 2000 h at 0.15 mA/cm^(2)at room temperature(RT,25℃).Also,LiFePO_(4)|PAN@BTO|Li full cells demonstrate excellent cycle performance(136.9 mA·h/g and 78%retention after 600 cycles at 0.5 C)at RT.Moreover,LiFePO_(4)|PAN@BTO|Li battery show extremely high safety and can still work normally under high-speed impact(2 Hz,∼30 kPa).We construct an in-situ cell monitoring system and disclose that the mechanism of suppressed lithium dendrite is originated from the generation of opposite piezoelectric potential and the feedback speed of intermittent piezoelectric potential signals is extremely fast.
基金funding from the Natural Science Foundation of Hubei Province,China(Grant No.2022CFA031)supported by the Natural Science Foundation of China(Grant No.22309056).
文摘The stable operation of solid-state lithium metal batteries at low temperatures is plagued by severe restrictions from inferior electrolyte-electrode interface compatibility and increased energy barrier for Li^(+)migration.Herein,we prepare a dual-salt poly(tetrahydrofuran)-based electrolyte consisting of lithium hexafluorophosphate and lithium difluoro(oxalato)borate(LiDFOB).The Li-salt anions(DFOB−)not only accelerate the ring-opening polymerization of tetrahydrofuran,but also promote the formation of highly ion-conductive and sustainable interphases on Li metal anodes without sacrificing the Li^(+)conductivity of electrolytes,which is favorable for Li^(+)transport kinetics at low temperatures.Applications of this polymer electrolyte in Li||LiFePO_(4)cells show 82.3%capacity retention over 1000 cycles at 30℃and endow stable discharge capacity at−30℃.Remarkably,the Li||LiFePO4 cells retain 52%of their room-temperature capacity at−20℃and 0.1 C.This rational design of dual-salt polymer-based electrolytes may provide a new perspective for the stable operation of quasi-solid-state batteries at low temperatures.
基金supported by the Key Program for International Science and Technology Cooperation Projects of the Ministry of Science and Technology of China(2021YFE0109700)Technical Innovation and Application Development Project of Chongqing(Z20230084)+7 种基金Opening Project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure(SKL202106SIC)Chinese National Natural Science Fund(11632004,U1864208)National Science and Technology Major Project(2017-VII-0011-0106)Science and Technology Planning Project of Tianjin(20ZYJDJC00030)Key Program of Research and Development of Hebei Province(202030507040009)Fund for Innovative Research Groups of Natural Science Foundation of Hebei Province(A2020202002)Natural Science Foundation of Chongqing(cstc2021jcyjmsxm X0241)Key Project of Natural Science Foundation of Tianjin(S20ZDF077)
文摘The ideal composite electrolyte for the pursued safe and high-energy-density lithium metal batteries(LMBs)is expected to demonstrate peculiarity of superior bulk conductivity,low interfacial resistances,and good compatibility against both Li-metal anode and high-voltage cathode.There is no composite electrolyte to synchronously meet all these requirements yet,and the battery performance is inhibited by the absence of effective electrolyte design.Here we report a unique"concentrated ionogel-in-ceramic"silanization composite electrolyte(SCE)and validate an electrolyte design strategy based on the coupling of high-content silane-conditioning garnet and concentrated ionogel that builds well-percolated Li+transport pathways and tackles the interface issues to respond all the aforementioned requirements.It is revealed that the silane conditioning enables the uniform dispersion of garnet nanoparticles at high content(70 wt%)and forms mixed-lithiophobic-conductive LiF-Li3N solid electrolyte interphase.Notably,the yielding SCE delivers an ultrahigh ionic conductivity of 1.76 X 10^(-3)S cm^(-1)at 25℃,an extremely low Li-metal/electrolyte interfacial area-specific resistance of 13Ωcm^(2),and a distinctly excellent long-term 1200 cycling without any capacity decay in 4.3 V Li‖LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2)(NCM523)quasi-solid-state LMB.This composite electrolyte design strategy can be extended to other quasi-/solid-state LMBs.
基金the National Natural Science Foundation of China (Nos. 21774069, 51633003 and 21474058) for financial support。
文摘Hydrogel-based quasi-solid-state electrolytes(Q-SSEs) swollen with electrolyte solutions are important components in stretchable supercapacitors and other wearable devices. This work fabricates a supertough, fatigue-resistant, and alkali-resistant multi-bond network(MBN) hydrogel aiming to be an alkaline Q-SSE. To synthesize the hydrogel, a 2-ureido-4[1H]-pyrimidone(UPy) motif is introduced into a poly(acrylic acid) polymer chain. The obtained MBN hydrogels with 75 wt% water content exhibit tensile strength as high as 2.47 MPa, which is enabled by the large energy dissipation ability originated from the dissociation of UPy dimers due to their high bond association energy. Owing to the high dimerization constant of UPy motifs, the dissociated UPy motifs are able to partially re-associate soon after being released from external forces, resulting in excellent fatigue-resistance. More importantly, the MBN hydrogels exhibit excellent alkali-resistance ability. The UPy Gel-10 swollen with 1 mol/L KOH display a tensile strength as high as ~1.0 MPa with elongation at break of ~550%. At the same time, they show ionic conductivity of ~17 m S/cm, which do not decline even when the hydrogels are stretched to 500% strain.The excellent mechanical property and ionic conductivity of the present hydrogels demonstrate potential application as a stretchable alkaline Q-SSE.
基金National Natural Science Foundation of China,Grant/Award Number:52064049Key National Natural Science Foundation of Yunnan Province,Grant/Award Numbers:2018FA028,2019FY003023+1 种基金International Joint Research Center for Advanced Energy Materials of Yunnan Province,Grant/Award Number:202003AE140001Key Laboratory of Solid State Ions for Green Energy of Yunnan University,Grant/Award Number:2019。
文摘A solid-state electrolyte(SSE),which is a solid ionic conductor and electroninsulating material,is known to play a crucial role in adapting a lithium metal anode to a high-capacity cathode in a solid-state battery.Among the various SSEs,the single Li-ion conductor has advantages in terms of enhancing the ion conductivity,eliminating interfacial side reactions,and broadening the electrochemical window.Covalent organic frameworks(COFs)are optimal platforms for achieving single Li-ion conduction behavior because of wellordered one-dimensional channels and precise chemical modification features.Herein,we study in depth three types of Li-carboxylate COFs(denoted LiOOC-COFn,n=1,2,and 3)as single Li-ion conducting SSEs.Benefiting from well-ordered directional ion channels,the single Li-ion conductor LiOOC-COF3 shows an exceptional ion conductivity of 1.36×10^(-5) S cm^(-1) at room temperature and a high transference number of 0.91.Moreover,it shows excellent electrochemical performance with long-term cycling,high-capacity output,and no dendrites in the quasi-solid-state organic battery,with the organic small molecule cyclohexanehexone(C_(6)O_(6))as the cathode and the Li metal as the anode,and enables effectively avoiding dissolution of the organic electrode by the liquid electrolyte.
基金support from the National Natural Science Foundation of China(52034011)the Fundamental Research Funds for the Science and Technology Program of Hunan Province(2019RS3002)+1 种基金the Central Universities of Central South University(Grant No.2018zzts133)Science and Technology Innovation Program of Hunan Province(2020RC2006).
文摘Quasi-solid-state lithium metal battery is a promising candidate for next generation high energy density and high safety power supply.Despite intensive efforts on electrolytes,uncontrolled interfacial reactions on lithium with electrolyte and patchy interfacial contacts still hinder its practical process.Herein,we bring in rationally designed F contained groups into polymer skeleton via in-situ gelation for the first time to establish quasi-solid-state battery.This method achieves a capacity retention of 90%after 1000 cycles at 0.5C with LiFePO_(4)cathodes.The interface constructed by polymer skeleton and reaction with–CF_(3)lead to the predicted solid electrolyte interface species with high stability.Furthermore,we optimize molecular reactivity and interface stability with regulating F contained end groups in the polymer.Comparisons on different structures reveal that high performance solid stable lithium metal batteries rely on chemical modification as well as stable polymer skeleton,which is more critical to construct robust and steady SEI with uniform lithium deposition.New approach with functional groups regulation proposes a more stable cycling process with a capacity retention of 94.2%at 0.5C and 87.6%at 1C after 1000 cycles with LiFePO_(4) cathodes,providing new insights for the practical development of quasi-solid-state lithium metal battery.
基金funding supports from the Natural Science Basis Research Plan in Shaanxi Province of China(2019JLZ-10)the Independent Research Project of National Key Laboratory of Electrical Insulation and Power Equipment(EIPE19111)。
文摘Serving as a promising alternative to liquid electrolyte in the application of portable and wearable devices,gel polymer electrolytes(GPEs)are expected to obtain more preferable properties rather than just be satisfied with the merits of high safety and deformability.Here,an easy-operated method is employed to fabricate cross-linked composite polymer membranes used for GPEs assisted by UV irradiation,in which N-doped carbon quantum dots(N-CQDs)and TiO2are introduced as photocatalysts and additives to improve the performances of GPEs.Specifically,N-CQDs participate as a cross-linker to construct the inner porous structure,and TiO2nanoparticles serve as a stabilizer to improve the electrochemical stability of GPEs under high voltage(3.5 V).The excellent thermal and mechanical stability of the membrane fabricated in this work guarantee the safety of the supercapacitors(SCs).This GPE based SC not only exhibits prominent rate performance(105%capacitance retention at the current density of 40A g^(-1))and cyclic stability(85%at 1 A g^(-1)under 3.5 V after 20,000 cycles),but also displays remarkable energy density(42.88 Wh kg^(-1))with high power density(19.3 k W kg^(-1)).Moreover,the superior rate and cycling performances of the as-prepared GPE based flexible SCs under flat and bending state confirm the feasibility of its application in flexible energy storage devices.
基金supported by the Natural Sciences and Engineering Research Council of Canada(NSERC),Canada Research Chair Program(CRC),Canada Foundation for Innovation(CFI),Ontario Research Fund(ORF),China Automotive Battery Research Institute Co.,Ltd.,Glabat Solid-State Battery Inc.,Canada Light Source(CLS)at the University of Saskatchewan,Interdisciplinary Development Initiatives(IDI)by Western University,and University of Western Ontariothe support from Mitacs Accelerate Program(IT13735)the funding support from Banting Postdoctoral Fel owship(BPF—180162)
文摘Conventional lithium-ion batteries(LIBs)with liquid electrolytes are challenged by their big safety concerns,particularly used in electric vehicles.All-solid-state batteries using solid-state electrolytes have been proposed to significantly improve safety yet are impeded by poor interfacial solid–solid contact and fast interface degradation.As a compromising strategy,in situ solidification has been proposed in recent years to fabricate quasi-solid-state batteries,which have great advantages in constructing intimate interfaces and cost-effective mass manufacturing.In this work,quasi-solid-state pouch cells with high loading electrodes(≥3 m Ah cm^(-2))were fabricated via in situ solidification of poly(ethylene glycol)diacrylate-based polymer electrolytes(PEGDA-PEs).Both single-layer and multilayer quasi-solid-state pouch cells(2.0 Ah)have demonstrated stable electrochemical performance over500 cycles.The superb electrochemical stability is closely related to the formation of robust and compatible interphase,which successfully inhibits interfacial side reactions and prevents interfacial structural degradation.This work demonstrates that in situ solidification is a facile and cost-effective approach to fabricate quasi-solid-state pouch cells with both excellent electrochemical performance and safety.
基金supported by the National Natural Science Foundation of China(No.92372123)Guangdong Basic and Applied Basic Research Foundation(No.2022A1515012057,2022B1515020005,2023B1515130004)Guangzhou Basic and Applied Basic Research Foundation(No.202201011342).
文摘Porous organic cages(POCs)with permanent porosity and excellent host–guest property hold great potentials in regulating ion transport behavior,yet their feasibility as solid-state electrolytes has never been testified in a practical battery.Herein,we design and fabricate a quasi-solid-state electrolyte(QSSE)based on a POC to enable the stable operation of Li-metal batteries(LMBs).Benefiting from the ordered channels and cavity-induced anion-trapping effect of POC,the resulting POC-based QSSE exhibits a high Li+transference number of 0.67 and a high ionic conductivity of 1.25×10^(−4) S cm^(−1) with a low activation energy of 0.17 eV.These allow for homogeneous Li deposition and highly reversible Li plating/stripping for over 2000 h.As a proof of concept,the LMB assembled with POC-based QSSE demonstrates extremely stable cycling performance with 85%capacity retention after 1000 cycles.Therefore,our work demonstrates the practical applicability of POC as SSEs for LMBs and could be extended to other energy-storage systems,such as Na and K batteries.
基金supported by the Recruitment Program of Global Expertsthe Hundred-Talent Project of FujianFuzhou University
文摘The practical applications of solid-state electrolytes in lithium-ion batteries(LIBs)are hindered by their low ionic conductivity and high interfacial resistance.Herein,an ethoxylated trimethylolpropane triacrylate based quasi-solid-state electrolyte(ETPTAQSSE)with a three-dimensional(3D)network is prepared by a one-step in-situ photopolymerization method.The 3D network is designed to overcome the contradiction between the plasticizer-related ionic conductivity and the thickness-dependent mechanical property of quasi-solid-state electrolytes.The ETPTA-QSSE achieves superb room-temperature ionic conductivity up to 4.55×10^(−3)S cm^(−1),a high lithium ion transference number of 0.57,along with a wide electrochemical window of 5.3 V(vs.Li+/Li),which outperforms most ever of the reported solid-state electrolytes.Owing to the robust network structure and the cathodeelectrolyte integrated electrode design,Li metal symmetrical cells show reduced interface resistance and reinforced electrode/electrolyte interface stability.When applying the ETPTA-QSSE in LiFePO_(4)||Li cells,the quasi-solid-state cell demonstrates an enhanced initial discharge capacity(155.5 mAh g^(−1)at 0.2 C)accompanied by a high average Coulombic efficiency of greater than 99.3%,offering capacity retention of 92%after 200 cycles.Accordingly,this work sheds light on the strategy of enhancing ionic conductivity and reducing interfacial resistance of quasi-solid-state electrolytes,which is promising for high-voltage LIBs.
基金the financial supports from the KeyArea Research and Development Program of Guangdong Province (2020B090919001)the National Natural Science Foundation of China (22078144)the Guangdong Natural Science Foundation for Basic and Applied Basic Research (2021A1515010138 and 2023A1515010686)。
文摘Li metal batteries using high-voltage layered oxides cathodes are of particular interest due to their high energy density.However,they suffer from short lifespan and extreme safety concerns,which are attributed to the degradation of layered oxides and the decomposition of electrolyte at high voltage,as well as the high reactivity of metallic Li.The key is the development of stable electrolytes against both highvoltage cathodes and Li with the formation of robust interphase films on the surfaces.Herein,we report a highly fluorinated ether,1,1,1-trifluoro-2-[(2,2,2-trifluoroethoxy)methoxy]ethane(TTME),as a cosolvent,which not only functions as a diluent forming a localized high concentration electrolyte(LHCE),but also participates in the construction of the inner solvation structure.The TTME-based electrolyte is stable itself at high voltage and induces the formation of a unique double-layer solid electrolyte interphase(SEI)film,which is embodied as one layer rich in crystalline structural components for enhanced mechanical strength and another amorphous layer with a higher concentration of organic components for enhanced flexibility.The Li||Cu cells display a noticeably high Coulombic efficiency of 99.28%after 300 cycles and Li symmetric cells maintain stable cycling more than 3200 h at 0.5 mA/cm^(2) and 1.0m Ah/cm^(2).In addition,lithium metal cells using LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) and Li CoO_(2) cathodes(both loadings~3.0 m Ah/cm^(2))realize capacity retentions of>85%over 240 cycles with a charge cut-off voltage of 4.4 V and 90%for 170 cycles with a charge cut-off voltage of 4.5 V,respectively.This study offers a bifunctional ether-based electrolyte solvent beneficial for high-voltage Li metal batteries.
基金the National Research Foundation(NRF)of Korea(No.2022R1A2B5B02002097),funded by the Korea government(MSIT).
文摘Current lithium-ion batteries(LIBs)rely on organic liquid electrolytes that pose significant risks due to their flammability and toxicity.The potential for environmental pollution and explosions resulting from battery damage or fracture is a critical concern.Water-based(aqueous)electrolytes have been receiving attention as an alternative to organic electrolytes.However,a narrow electrochemicalstability window,water decomposition,and the consequent low battery operating voltage and energy density hinder the practical use of aqueous electrolytes.Therefore,developing novel aqueous electrolytes for sustainable,safe,high-performance LIBs remains challenging.This Review first commences by summarizing the roles and requirements of electrolytes–separators and then delineates the progression of aqueous electrolytes for LIBs,encompassing aqueous liquid and gel electrolyte development trends along with detailed principles of the electrolytes.These aqueous electrolytes are progressed based on strategies using superconcentrated salts,concentrated diluents,polymer additives,polymer networks,and artificial passivation layers,which are used for suppressing water decomposition and widening the electrochemical stability window of water of the electrolytes.In addition,this Review discusses potential strategies for the implementation of aqueous Li-metal batteries with improved electrolyte–electrode interfaces.A comprehensive understanding of each strategy in the aqueous system will assist in the design of an aqueous electrolyte and the development of sustainable and safe high-performance batteries.
基金supported by the Shandong Provincial Natural Science Foundation,China(No.ZR2019MEM014)。
文摘The electrolyte directly contacts the essential parts of a lithium-ion battery,and as a result,the electrochemical properties of the electrolyte have a significant impact on the voltage platform,charge discharge capacity,energy density,service life,and rate discharge performance.By raising the voltage at the charge/discharge plateau,the energy density of the battery is increased.However,this causes transition metal dissolution,irreversible phase changes of the cathode active material,and parasitic electrolyte oxidation reactions.This article presents an overview of these concerns to provide a clear explanation of the issues involved in the development of electrolytes for high-voltage lithium-ion batteries.Additionally,solidstate electrolytes enable various applications and will likely have an impact on the development of batteries with high energy densities.It is necessary to improve the high-voltage performance of electrolytes by creating solvents with high thermal stabilities and high voltage resistance and additives with superior film forming performance,multifunctional capabilities,and stable lithium salts.To offer suggestions for the future development of high-energy lithium-ion batteries,we conclude by offering our own opinions and insights on the current development of lithium-ion batteries.
基金The work described in this paper was fully supported by a Grant from the City University of Hong Kong(Project No.9610641).
文摘Electrolyte design holds the greatest opportunity for the development of batteries that are capable of sub-zero temperature operation.To get the most energy storage out of the battery at low temperatures,improvements in electrolyte chemistry need to be coupled with optimized electrode materials and tailored electrolyte/electrode interphases.Herein,this review critically outlines electrolytes’limiting factors,including reduced ionic conductivity,large de-solvation energy,sluggish charge transfer,and slow Li-ion transportation across the electrolyte/electrode interphases,which affect the low-temperature performance of Li-metal batteries.Detailed theoretical derivations that explain the explicit influence of temperature on battery performance are presented to deepen understanding.Emerging improvement strategies from the aspects of electrolyte design and electrolyte/electrode interphase engineering are summarized and rigorously compared.Perspectives on future research are proposed to guide the ongoing exploration for better low-temperature Li-metal batteries.