期刊文献+
共找到953篇文章
< 1 2 48 >
每页显示 20 50 100
Insights into the nitride-regulated processes at the electrolyte/electrode interface in quasi-solid-state lithium metal batteries 被引量:2
1
作者 Jing Wan Wan-Ping Chen +5 位作者 Gui-Xian Liu Yang Shi Sen Xin Yu-Guo Guo Rui Wen Li-Jun Wan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第4期780-786,共7页
Gel polymer electrolytes(GPEs)are one of the promising candidates for high-energy-density quasi-solid-state lithium metal batteries(QSSLMBs),for their high ionic conductivity and excellent interfacial compatibility.Th... Gel polymer electrolytes(GPEs)are one of the promising candidates for high-energy-density quasi-solid-state lithium metal batteries(QSSLMBs),for their high ionic conductivity and excellent interfacial compatibility.The comprehension of dynamic evolution and structure-reactivity correlation at the GPE/Li interface becomes significant.Here,in situ electrochemical atomic force microscopy(EC-AFM)provides insights into the LiNO_(3)-regulated micromechanism of the Li plating/stripping processes upon cycles in GPE-based LMBs at nanoscale.The additive LiNO_(3)induces the formation of amorphous nitride SEI film and facilitates Li^(+) ion diffusion.It stabilizes a compatible interface and regulates the Li nucleation/growth at steady kinetics.The deposited Li is in the shape of chunks and tightly compact.The Li dissolution shows favorable reversibility,which guarantees the cycling performance of LMBs.In situ AFM monitoring provides a deep understanding into the dynamic evolution of Li deposition/dissolution and the interphasial properties of tunable SEI film,regulating the rational design of electrolyte and optimizing interfacial establishment for GPE-based QSSLMBs. 展开更多
关键词 In-situ electrochemical atomic force microscopy Gel polymer electrolyte Solid electrolyte interphase lithium deposition/dissolution quasi-solid-state lithium metal batteries
下载PDF
Molecular Reactivity and Interface Stability Modification in In-Situ Gel Electrolyte for High Performance Quasi-Solid-State Lithium Metal Batteries 被引量:2
2
作者 Qiyu Wang Xiangqun Xu +4 位作者 Bo Hong Maohui Bai Jie Li Zhian Zhang Yanqing Lai 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第3期8-19,共12页
Quasi-solid-state lithium metal battery is a promising candidate for next generation high energy density and high safety power supply.Despite intensive efforts on electrolytes,uncontrolled interfacial reactions on lit... Quasi-solid-state lithium metal battery is a promising candidate for next generation high energy density and high safety power supply.Despite intensive efforts on electrolytes,uncontrolled interfacial reactions on lithium with electrolyte and patchy interfacial contacts still hinder its practical process.Herein,we bring in rationally designed F contained groups into polymer skeleton via in-situ gelation for the first time to establish quasi-solid-state battery.This method achieves a capacity retention of 90%after 1000 cycles at 0.5C with LiFePO_(4)cathodes.The interface constructed by polymer skeleton and reaction with–CF_(3)lead to the predicted solid electrolyte interface species with high stability.Furthermore,we optimize molecular reactivity and interface stability with regulating F contained end groups in the polymer.Comparisons on different structures reveal that high performance solid stable lithium metal batteries rely on chemical modification as well as stable polymer skeleton,which is more critical to construct robust and steady SEI with uniform lithium deposition.New approach with functional groups regulation proposes a more stable cycling process with a capacity retention of 94.2%at 0.5C and 87.6%at 1C after 1000 cycles with LiFePO_(4) cathodes,providing new insights for the practical development of quasi-solid-state lithium metal battery. 展开更多
关键词 F contained end groups in-situ gel electrolyte interface stability molecular reactivity quasi-solid-state lithium metal battery
下载PDF
A cation-dipole-reinforced elastic polymer electrolyte enabling long-cycling quasi-solid-state lithium metal batteries 被引量:1
3
作者 Zhuyi Wang Yiming Wang +3 位作者 Pan Zhai Preeyaporn Poldorn Siriporn Jungsuttiwong Shuai Yuan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第12期340-348,I0009,共10页
The application of ionic liquids(IL)in polymer electrolytes represents a safer alternative to the currently used organic solvents in lithium batteries due to their nonflammability and thermal stability.However,as a pl... The application of ionic liquids(IL)in polymer electrolytes represents a safer alternative to the currently used organic solvents in lithium batteries due to their nonflammability and thermal stability.However,as a plasticizer,it is generally agreed that the introduction of ionic liquid usually leads to a trade-off between ion transport and mechanical properties of polymer electrolyte.Here we report the synthesis of an IL-embedded polymer electrolyte with both high ionic conductivity(2.77×10^(-4)S cm^(-1)at room temperature)and excellent mechanical properties(high tensile strength up to 11.4 MPa and excellent stretchability of 387%elongation at break)achieved by strong ion–dipole interactions between polymer electrolyte components,which was unveiled by the DFT calculation.Moreover,this polymer electrolyte also exhibits nonflammability,good thermal stability and the ability to recover reversibly from applied stress,i.e.,excellent elasticity.This highly viscoelastic polymer electrolyte enables tight interfacial contact and good adaptability with electrodes for stable lithium stripping/plating for 2000 h under a current density of 0.1 mA cm^(-2).By coupling with this polymer electrolyte,the LiFePO_(4)/Li cells exhibit outstanding cycling stability at room temperature as well as the reliability under extreme environmental temperature or being abused. 展开更多
关键词 Elastic polymer electrolyte Ion-dipole interactions High tensile strength quasi-solid-state lithium battery Long cycling
下载PDF
Electrode structure enabling dendrite inhibition for high cycle stability quasi-solid-state lithium metal batteries
4
作者 Kaiming Wang Ao Yu +7 位作者 Zhiyi Zhou Fei Shen Manni Li Liang Zhang Weichang Guo Yifei Chen Le Shi Xiaogang Han 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期232-241,共10页
Lithium(Li)metal batteries(LMBs)are widely regarded as the ultimate choice for the next generation of high-energy–density batteries.However,the uncontrollable growth of Li dendrites formed by inhomogeneous deposition... Lithium(Li)metal batteries(LMBs)are widely regarded as the ultimate choice for the next generation of high-energy–density batteries.However,the uncontrollable growth of Li dendrites formed by inhomogeneous deposition seriously hinders its commercialization.Although many studies have achieved significant results in inhibiting the formation of Li dendrites,it is still impossible to eradicate them completely.Therefore,regulating the deposition behavior,such as the growth direction of unevenly deposited Li,is preferable to unilaterally suppressing them in some cases.Here we report a structured anode that can confine the deposited Li within holes and tune it to become vertical-up/horizontal-centripetal mixed growth mode by optimizing the electric field/Li^(+)concentration gradient.The Li^(+) adsorbed by the poly(amic acid)(PAA)insulating layer coated on the anode surface can form the Li^(+)concentration gradient pointing to the center of the hole.Combined with the special electric field formed by the hole structure,it is favorable for the Li^(+)to move into the vertically arrayed holes and simultaneously deposit on the bottom and walls.Furthermore,both in-situ and ex-situ observations confirm that the growth mode is changed and the Li deposition morphology is denser,which can greatly delay capacity fading and prolong cycle life in both liquid and quasi-solid-state LMBs.All the results show that the novel anode provides a new perspective for deep research into solid-state LMBs. 展开更多
关键词 lithium metal batteries Structured anode Deposition behavior quasi-solid-state
下载PDF
Integrated lithium metal anode protected by composite solid electrolyte film enables stable quasi-solid-state lithium metal batteries 被引量:9
5
作者 Junfan Ding Rui Xu +4 位作者 Chong Yan Ye Xiao Yeru Liang Hong Yuan Jiaqi Huang 《Chinese Chemical Letters》 SCIE CAS CSCD 2020年第9期2339-2342,共4页
Lithium(Li) metal,possessing an extremely high theoretical specific capacity(3860 mAh/g) and the most negative electrode potential(-3.040 V vs.standard hydrogen electrode),is one the most favorable anode materials for... Lithium(Li) metal,possessing an extremely high theoretical specific capacity(3860 mAh/g) and the most negative electrode potential(-3.040 V vs.standard hydrogen electrode),is one the most favorable anode materials for future high-energy-density batteries.However,the poor cyclability and safety issues induced by extremely unstable interfaces of traditional liquid Li metal batteries have limited their practical applications.Herein,a quasi-solid battery is constructed to offer superior interfacial stability as well as excellent interfacial contact by the incorporation of Li@composite solid electrolyte integrated electrode and a limited amount of liquid electrolyte(7.5 μL/cm2).By combining the inorganic garnet Aldoped Li6.75La3Zr1.75Ta0.25O12(LLZO) with high mechanical strength and ionic conductivity and the o rganic ethylene-vinyl acetate copolymer(EVA) with good flexibility,the composite solid electrolyte film could provide sufficient ion channels,sustained interfacial contact and good mechanical stability at the anode side,which significantly alleviates the thermodynamic corrosion and safety problems induced by liquid electrolytes.This innovative and facile quasi-solid strategy is aimed to promote the intrinsic safety and stability of working Li metal anode,shedding light on the development of next-generation highperformance Li metal batteries. 展开更多
关键词 lithium metal anodes Composite electrolyte quasi-solid-state batteries lithium dendrites Lean electrolyte
原文传递
Recent applications of ionic liquids in quasi-solid-state lithium metal batteries 被引量:4
6
作者 Jiajia Li Fangfang Li +3 位作者 Lan Zhang Haitao Zhang Ulla Lassi Xiaoyan Ji 《Green Chemical Engineering》 2021年第3期253-265,共13页
Quasi-solid-state lithium metal batteries are considered as one of the most promising energy storage devices,and the application of ionic liquids(ILs)as a new generation of functionalized electrolyte components in lit... Quasi-solid-state lithium metal batteries are considered as one of the most promising energy storage devices,and the application of ionic liquids(ILs)as a new generation of functionalized electrolyte components in lithium metal batteries has become one of the research focuses.In this review,the very recent research work related to using ILs to develop quasi-solid-state electrolytes and their influences on the performances of quasi-solid-state lithium metal batteries were surveyed and summarized,suggesting that the introduction of ILs can improve the ionic conductivity,broaden the electrochemical stability window,and enhance the electrochemical stability of the selected electrolytes.Moreover,using ILs to prepare high-performance electrodes with unique microstructures and uniform distribution of fillers were also introduced.The composite quasi-solid-state electrolytes were suggested as the mainstream of electrolytes in the future due to the combination of the advantages of inorganic and polymer quasi-solid-state electrolytes,and their development challenges in high energy and high safety quasisolid-state lithium metal batteries were also discussed. 展开更多
关键词 Ionic liquids quasi-solid-state electrolytes lithium metal batteries Energy storage
原文传递
Highly Efficient Aligned Ion‑Conducting Network and Interface Chemistries for Depolarized All‑Solid‑State Lithium Metal Batteries 被引量:3
7
作者 Yongbiao Mu Shixiang Yu +12 位作者 Yuzhu Chen Youqi Chu Buke Wu Qing Zhang Binbin Guo Lingfeng Zou Ruijie Zhang Fenghua Yu Meisheng Han Meng Lin Jinglei Yang Jiaming Bai Lin Zeng 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期102-119,共18页
Improving the long-term cycling stability and energy density of all-solid-state lithium(Li)-metal batteries(ASSLMBs)at room temperature is a severe challenge because of the notorious solid–solid interfacial contact l... Improving the long-term cycling stability and energy density of all-solid-state lithium(Li)-metal batteries(ASSLMBs)at room temperature is a severe challenge because of the notorious solid–solid interfacial contact loss and sluggish ion transport.Solid electrolytes are generally studied as two-dimensional(2D)structures with planar interfaces,showing limited interfacial contact and further resulting in unstable Li/electrolyte and cathode/electrolyte interfaces.Herein,three-dimensional(3D)architecturally designed composite solid electrolytes are developed with independently controlled structural factors using 3D printing processing and post-curing treatment.Multiple-type electrolyte films with vertical-aligned micro-pillar(p-3DSE)and spiral(s-3DSE)structures are rationally designed and developed,which can be employed for both Li metal anode and cathode in terms of accelerating the Li+transport within electrodes and reinforcing the interfacial adhesion.The printed p-3DSE delivers robust long-term cycle life of up to 2600 cycles and a high critical current density of 1.92 mA cm^(−2).The optimized electrolyte structure could lead to ASSLMBs with a superior full-cell areal capacity of 2.75 mAh cm^(−2)(LFP)and 3.92 mAh cm^(−2)(NCM811).This unique design provides enhancements for both anode and cathode electrodes,thereby alleviating interfacial degradation induced by dendrite growth and contact loss.The approach in this study opens a new design strategy for advanced composite solid polymer electrolytes in ASSLMBs operating under high rates/capacities and room temperature. 展开更多
关键词 All-solid-state lithium metal batteries Composite solid electrolyte 3D printing Areal capacity Interfacial degradation
下载PDF
12.6μm-Thick Asymmetric Composite Electrolyte with Superior Interfacial Stability for Solid-State Lithium-Metal Batteries 被引量:2
8
作者 Zheng Zhang Jingren Gou +4 位作者 Kaixuan Cui Xin Zhang Yujian Yao Suqing Wang Haihui Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期397-409,共13页
Solid-state lithium metal batteries(SSLMBs)show great promise in terms of high-energy-density and high-safety performance.However,there is an urgent need to address the compatibility of electrolytes with high-voltage ... Solid-state lithium metal batteries(SSLMBs)show great promise in terms of high-energy-density and high-safety performance.However,there is an urgent need to address the compatibility of electrolytes with high-voltage cathodes/Li anodes,and to minimize the electrolyte thickness to achieve highenergy-density of SSLMBs.Herein,we develop an ultrathin(12.6μm)asymmetric composite solid-state electrolyte with ultralight areal density(1.69 mg cm^(−2))for SSLMBs.The electrolyte combining a garnet(LLZO)layer and a metal organic framework(MOF)layer,which are fabricated on both sides of the polyethylene(PE)separator separately by tape casting.The PE separator endows the electrolyte with flexibility and excellent mechanical properties.The LLZO layer on the cathode side ensures high chemical stability at high voltage.The MOF layer on the anode side achieves a stable electric field and uniform Li flux,thus promoting uniform Li^(+)deposition.Thanks to the well-designed structure,the Li symmetric battery exhibits an ultralong cycle life(5000 h),and high-voltage SSLMBs achieve stable cycle performance.The assembled pouch cells provided a gravimetric/volume energy density of 344.0 Wh kg^(−1)/773.1 Wh L^(−1).This simple operation allows for large-scale preparation,and the design concept of ultrathin asymmetric structure also reveals the future development direction of SSLMBs. 展开更多
关键词 Solid-state lithium metal batteries Composite solid-state electrolyte Ultrathin asymmetric structure Pouch cells
下载PDF
How Does Stacking Pressure Affect the Performance of Solid Electrolytes and All-Solid-State Lithium Metal Batteries? 被引量:2
9
作者 Junwu Sang Bin Tang +3 位作者 Yong Qiu Yongzheng Fang Kecheng Pan Zhen Zhou 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第4期93-98,共6页
All-solid-state lithium metal batteries(ASSLMBs)with solid electrolytes(SEs)have emerged as a promising alternative to liquid electrolyte-based Li-ion batteries due to their higher energy density and safety.However,si... All-solid-state lithium metal batteries(ASSLMBs)with solid electrolytes(SEs)have emerged as a promising alternative to liquid electrolyte-based Li-ion batteries due to their higher energy density and safety.However,since ASSLMBs lack the wetting properties of liquid electrolytes,they require stacking pressure to prevent contact loss between electrodes and SEs.Though previous studies showed that stacking pressure could impact certain performance aspects,a comprehensive investigation into the effects of stacking pressure has not been conducted.To address this gap,we utilized the Li_(6)PS_(5)Cl solid electrolyte as a reference and investigated the effects of stacking pressures on the performance of SEs and ASSLMBs.We also developed models to explain the underlying origin of these effects and predict battery performance,such as ionic conductivity and critical current density.Our results demonstrated that an appropriate stacking pressure is necessary to achieve optimal performance,and each step of applying pressure requires a specific pressure value.These findings can help explain discrepancies in the literature and provide guidance to establish standardized testing conditions and reporting benchmarks for ASSLMBs.Overall,this study contributes to the understanding of the impact of stacking pressure on the performance of ASSLMBs and highlights the importance of careful pressure optimization for optimal battery performance. 展开更多
关键词 critical current density solid electrolyte solid-state lithium metal batteries stacking pressure
下载PDF
Unique double-layer solid electrolyte interphase formed with fluorinated ether-based electrolytes for high-voltage lithium metal batteries 被引量:2
10
作者 Ruo Wang Jiawei Li +11 位作者 Bing Han Qingrong Wang Ruohong Ke Tong Zhang Xiaohu Ao Guangzhao Zhang Zhongbo Liu Yunxian Qian Fangfang Pan Iseult Lynch Jun Wang Yonghong Deng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期532-542,I0012,共12页
Li metal batteries using high-voltage layered oxides cathodes are of particular interest due to their high energy density.However,they suffer from short lifespan and extreme safety concerns,which are attributed to the... Li metal batteries using high-voltage layered oxides cathodes are of particular interest due to their high energy density.However,they suffer from short lifespan and extreme safety concerns,which are attributed to the degradation of layered oxides and the decomposition of electrolyte at high voltage,as well as the high reactivity of metallic Li.The key is the development of stable electrolytes against both highvoltage cathodes and Li with the formation of robust interphase films on the surfaces.Herein,we report a highly fluorinated ether,1,1,1-trifluoro-2-[(2,2,2-trifluoroethoxy)methoxy]ethane(TTME),as a cosolvent,which not only functions as a diluent forming a localized high concentration electrolyte(LHCE),but also participates in the construction of the inner solvation structure.The TTME-based electrolyte is stable itself at high voltage and induces the formation of a unique double-layer solid electrolyte interphase(SEI)film,which is embodied as one layer rich in crystalline structural components for enhanced mechanical strength and another amorphous layer with a higher concentration of organic components for enhanced flexibility.The Li||Cu cells display a noticeably high Coulombic efficiency of 99.28%after 300 cycles and Li symmetric cells maintain stable cycling more than 3200 h at 0.5 mA/cm^(2) and 1.0m Ah/cm^(2).In addition,lithium metal cells using LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) and Li CoO_(2) cathodes(both loadings~3.0 m Ah/cm^(2))realize capacity retentions of>85%over 240 cycles with a charge cut-off voltage of 4.4 V and 90%for 170 cycles with a charge cut-off voltage of 4.5 V,respectively.This study offers a bifunctional ether-based electrolyte solvent beneficial for high-voltage Li metal batteries. 展开更多
关键词 lithium metal batteries High-voltage layered oxides Fluorinated ether-based electrolytes Solid electrolyte interphase Cathode electrolyte interphase
下载PDF
From Liquid to Solid‑State Lithium Metal Batteries:Fundamental Issues and Recent Developments 被引量:1
11
作者 Zhao Zhang Wei‑Qiang Han 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期68-125,共58页
The widespread adoption of lithium-ion batteries has been driven by the proliferation of portable electronic devices and electric vehicles,which have increasingly stringent energy density requirements.Lithium metal ba... The widespread adoption of lithium-ion batteries has been driven by the proliferation of portable electronic devices and electric vehicles,which have increasingly stringent energy density requirements.Lithium metal batteries(LMBs),with their ultralow reduction potential and high theoretical capacity,are widely regarded as the most promising technical pathway for achieving high energy density batteries.In this review,we provide a comprehensive overview of fundamental issues related to high reactivity and migrated interfaces in LMBs.Furthermore,we propose improved strategies involving interface engineering,3D current collector design,electrolyte optimization,separator modification,application of alloyed anodes,and external field regulation to address these challenges.The utilization of solid-state electrolytes can significantly enhance the safety of LMBs and represents the only viable approach for advancing them.This review also encompasses the variation in fundamental issues and design strategies for the transition from liquid to solid electrolytes.Particularly noteworthy is that the introduction of SSEs will exacerbate differences in electrochemical and mechanical properties at the interface,leading to increased interface inhomogeneity—a critical factor contributing to failure in all-solidstate lithium metal batteries.Based on recent research works,this perspective highlights the current status of research on developing high-performance LMBs. 展开更多
关键词 lithium metal batteries All-solid-state lithium metal battery Li dendrite Solid electrolyte Interface
下载PDF
Enabling an Inorganic-Rich Interface via Cationic Surfactant for High-Performance Lithium Metal Batteries 被引量:1
12
作者 Zejun Sun Jinlin Yang +18 位作者 Hongfei Xu Chonglai Jiang Yuxiang Niu Xu Lian Yuan Liu Ruiqi Su Dayu Liu Yu Long Meng Wang Jingyu Mao Haotian Yang Baihua Cui Yukun Xiao Ganwen Chen Qi Zhang Zhenxiang Xing Jisheng Pan Gang Wu Wei Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期1-17,共17页
An anion-rich electric double layer(EDL)region is favorable for fabricating an inorganic-rich solid-electrolyte interphase(SEI)towards stable lithium metal anode in ester electrolyte.Herein,cetyltrimethylammonium brom... An anion-rich electric double layer(EDL)region is favorable for fabricating an inorganic-rich solid-electrolyte interphase(SEI)towards stable lithium metal anode in ester electrolyte.Herein,cetyltrimethylammonium bromide(CTAB),a cationic surfactant,is adopted to draw more anions into EDL by ionic interactions that shield the repelling force on anions during lithium plating.In situ electrochemical surface-enhanced Raman spectroscopy results combined with molecular dynamics simulations validate the enrichment of NO_(3)^(−)/FSI−anions in the EDL region due to the positively charged CTA^(+).In-depth analysis of SEI structure by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry results confirmed the formation of the inorganic-rich SEI,which helps improve the kinetics of Li^(+)transfer,lower the charge transfer activation energy,and homogenize Li deposition.As a result,the Li||Li symmetric cell in the designed electrolyte displays a prolongated cycling time from 500 to 1300 h compared to that in the blank electrolyte at 0.5 mA cm^(-2) with a capacity of 1 mAh cm^(-2).Moreover,Li||LiFePO_(4) and Li||LiCoO_(2) with a high cathode mass loading of>10 mg cm^(-2) can be stably cycled over 180 cycles. 展开更多
关键词 Cationic surfactant lithium nitrate additive Solid-electrolyte interphase Electric double layer lithium metal batteries
下载PDF
Bifunctional TiO_(2-x)nanofibers enhanced gel polymer electrolyte for high performance lithium metal batteries 被引量:1
13
作者 Yixin Wu Zhen Chen +6 位作者 Yang Wang Yu Li Chunxing Zhang Yihui Zhu Ziyu Yue Xin Liu Minghua Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期437-448,I0011,共13页
Exploration of advanced gel polymer electrolytes(GPEs)represents a viable strategy for mitigating dendritic lithium(Li)growth,which is crucial in ensuring the safe operation of high energy density Li metal batteries(L... Exploration of advanced gel polymer electrolytes(GPEs)represents a viable strategy for mitigating dendritic lithium(Li)growth,which is crucial in ensuring the safe operation of high energy density Li metal batteries(LMBs).Despite this,the application of GPEs is still hindered by inadequate ionic conductivity,low Li^(+)transference number,and subpar physicochemical properties.Herein,Ti O_(2-x)nanofibers(NF)with oxygen vacancy defects were synthesized by a one-step process as inorganic fillers to enhance the thermal/mechanical/ionic-transportation performances of composite GPEs.Various characterizations and theoretical calculations reveal that the oxygen vacancies on the surface of Ti O_(2-x)NF accelerate the dissociation of Li PF_6,promote the rapid transfer of free Li^(+),and influence the formation of Li F-enriched solid electrolyte interphase.Consequently,the composite GPEs demonstrate enhanced ionic conductivity(1.90m S cm^(-1)at room temperature),higher lithium-ion transference number(0.70),wider electrochemical stability window(5.50 V),superior mechanical strength,excellent thermal stability(210℃),and improved compatibility with lithium,resulting in superior cycling stability and rate performance in both Li||Li,Li||Li Fe PO_(4),and Li||Li Ni_(0.8)Co_(0.1)Mn_(0.1)O_(2)cells.Overall,the synergistic influence of nanofiber morphology and enriched oxygen vacancy structure of fillers on electrochemical properties of composite GPEs is comprehensively investigated,thus,it is anticipated to shed new light on designing high-performance GPEs LMBs. 展开更多
关键词 Nanofibers fillers Oxygen vacancies Gel polymer electrolytes lithium metal batteries
下载PDF
Regulation of Lithium-Ion Flux by Nanotopology Lithiophilic Boron-Oxygen Dipole in Solid Polymer Electrolytes for Lithium-Metal Batteries 被引量:1
14
作者 Manying Cui Hongyang Zhao +9 位作者 Yanyang Qin Shishi Zhang Ruxin Zhao Miao Zhang Wei Yu Guoxin Gao Xiaofei Hu Yaqiong Su Kai Xi Shujiang Ding 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第4期74-82,共9页
Inhomogeneous lithium-ion(Li^(+))deposition is one of the most crucial problems,which severely deteriorates the performance of solid-state lithium metal batteries(LMBs).Herein,we discovered that covalent organic frame... Inhomogeneous lithium-ion(Li^(+))deposition is one of the most crucial problems,which severely deteriorates the performance of solid-state lithium metal batteries(LMBs).Herein,we discovered that covalent organic framework(COF-1)with periodically arranged boron-oxygen dipole lithiophilic sites could directionally guide Li^(+)even deposition in asymmetric solid polymer electrolytes.This in situ prepared 3D cross-linked network Poly(ACMO-MBA)hybrid electrolyte simultaneously delivers outstanding ionic conductivity(1.02×10^(-3)S cm^(-1)at 30°C)and excellent mechanical property(3.5 MPa).The defined nanosized channel in COF-1 selectively conducts Li^(+)increasing Li^(+)transference number to 0.67.Besides,The COF-1 layer and Poly(ACMO-MBA)also participate in forming a boron-rich and nitrogen-rich solid electrolyte interface to further improve the interfacial stability.The Li‖Li symmetric cell exhibits remarkable cyclic stability over 1000 h.The Li‖NCM523 full cell also delivers an outstanding lifespan over 400 cycles.Moreover,the Li‖LiFePO_(4)full cell stably cycles with a capacity retention of 85%after 500 cycles.the Li‖LiFePO_(4)pouch full exhibits excellent safety performance under pierced and cut conditions.This work thereby further broadens and complements the application of COF materials in polymer electrolyte for dendrite-free and high-energy-density solid-state LMBs. 展开更多
关键词 covalent organic framework ion transport regulation lithium metal battery solid polymer electrolyte
下载PDF
Interfacial fusion-enhanced 11 μm-thick gel polymer electrolyte for high-performance lithium metal batteries
15
作者 Ying Jiang Xinyue Hong +3 位作者 Peng Huang Jing Shi Wen Yan Chao Lai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期58-66,共9页
In the pursuit of ultrathin polymer electrolyte(<20 μm) for lithium metal batteries, achieving a balance between mechanical strength and interfacial stability is crucial for the longevity of the electrolytes.Herei... In the pursuit of ultrathin polymer electrolyte(<20 μm) for lithium metal batteries, achieving a balance between mechanical strength and interfacial stability is crucial for the longevity of the electrolytes.Herein, 11 μm-thick gel polymer electrolyte is designed via an integrated electrode/electrolyte structure supported by lithium metal anode. Benefiting from an exemplary superiority of excellent mechanical property, high ionic conductivity, and robust interfacial adhesion, the in-situ formed polymer electrolyte reinforced by titanosiloxane networks(ISPTS) embodies multifunctional roles of physical barrier, ionic carrier, and artificial protective layer at the interface. The potent interfacial interactions foster a seamless fusion of the electrode/electrolyte interfaces and enable continuous ion transport. Moreover, the built-in ISPTS electrolyte participates in the formation of gradient solid-electrolyte interphase(SEI) layer, which enhances the SEI's structural integrity against the strain induced by volume fluctuations of lithium anode.Consequently, the resultant 11 μm-thick ISPTS electrolyte enables lithium symmetric cells with cycling stability over 600 h and LiFePO_(4) cells with remarkable capacity retention of 96.6% after 800 cycles.This study provides a new avenue for designing ultrathin polymer electrolytes towards stable, safe,and high-energy–density lithium metal batteries. 展开更多
关键词 Ultrathin gel polymer electrolyte Integrated electrode/electrolyte structure quasi-solid-state lithium metal battery Solid-electrolyte interphase
下载PDF
Pyrometallurgical recycling of end-of-life lithium-ion batteries
16
作者 Juheon Lee Kwang Won Park +1 位作者 Il Sohn Sanghoon Lee 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1554-1571,共18页
The global importance of lithium-ion batteries(LIBs)has been increasingly underscored with the advancement of high-performance energy storage technologies.However,the end-of-life of these batteries poses significant c... The global importance of lithium-ion batteries(LIBs)has been increasingly underscored with the advancement of high-performance energy storage technologies.However,the end-of-life of these batteries poses significant challenges from environmental,economic,and resource management perspectives.This review paper focuses on the pyrometallurgy-based recycling process of lithium-ion batteries,exploring the fundamental understanding of this process and the importance of its optimization.Centering on the high energy consumption and emission gas issues of the pyrometallurgical recycling process,we systematically analyzed the capital-intensive nature of this process and the resulting technological characteristics.Furthermore,we conducted an in-depth discussion on the future research directions to overcome the existing technological barriers and limitations.This review will provide valuable insights for researchers and industry stakeholders in the battery recycling field. 展开更多
关键词 spent lithium-ion batteries RECYCLING SUSTAINABILITY lithium valuable metal
下载PDF
Converting an O-vacancy-rich oxide into a multifunctional separator modifier for long-lifespan lithium metal batteries
17
作者 Juntao Si Xiaoying Li +3 位作者 Yixuan Li Kuo Cao Yiran Zhu Chunhua Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期371-378,I0007,共9页
The lithium metal anode is hailed as the desired "holy grail" for the forthcoming generation of highenergy-density batteries,given its astounding theoretical capacity and low potential.Nonetheless,the format... The lithium metal anode is hailed as the desired "holy grail" for the forthcoming generation of highenergy-density batteries,given its astounding theoretical capacity and low potential.Nonetheless,the formation and growth of dendrites seriously compromise battery life and safety.Herein,an yttriastabilized bismuth oxide(YSB) layer is fabricated on the polypropylene(PP) separator,where YSB reacts with Li anode in-situ in the cell to form a multi-component composite interlayer consisting of Li_(3)Bi,Li_(2)O,and Y_(2)O_(3).The interlayer can function not only as a redistributor to regulate Li^(+) distribution but also as an anion adsorber to increase the Li^(+) transference number from 0.37 to 0.79 for suppressing dendrite nucleation and growth.Consequently,compared with the cell with a baseline separator,those with modified separators exhibit prolonged lifespan in both Li/Li symmetrical cells and Li/Cu half-cells.Notably,the full cells coupled with ultrahigh-loading LiFePO_(4) display an excellent cycling performance of 1700 cycles with a high capacity retention of ~80% at 1 C,exhibiting great potential for practical applications.This work provides a feasible and effective new strategy for separator modification towards building a much-anticipated dendrite-free Li anode and realizing long-lifespan lithium metal batteries. 展开更多
关键词 lithium metal battery SEPARATOR Dendrite-free Multifunctional interlayer Conversion-alloying reaction
下载PDF
Liquid metal as an efficient protective layer for lithium metal anodes in all-solid-state batteries
18
作者 Shiqiang Zhou Mengrui Li +7 位作者 Peike Wang Lukuan Cheng Lina Chen Yan Huang Boxuan Cao Suzhu Yu Qingju Liu Jun Wei 《Carbon Energy》 SCIE EI CAS CSCD 2024年第7期219-229,共11页
Lithium metal batteries with inorganic solid-state electrolytes have emerged as strong and attractive candidates for electrochemical energy storage devices because of their high-energy content and safety.Nonetheless,i... Lithium metal batteries with inorganic solid-state electrolytes have emerged as strong and attractive candidates for electrochemical energy storage devices because of their high-energy content and safety.Nonetheless,inherent challenges of deleterious lithium dendrite growth and poor interfacial stability hinder their commercial application.Herein,we report a liquid metal-coated lithium metal(LM@Li)anode strategy to improve the contact between lithium metal and a Li6PS5Cl inorganic electrolyte.The LM@Li symmetric cell shows over 1000 h of stable lithium plating/stripping cycles at 2mA cm^(-2) and a significantly higher critical current density of 9.8 mAcm^(-2) at 25°C.In addition,a full battery assembled with a high-capacity composite LiNbO3@-LiNi_(0.7)Co_(0.2)Mn_(0.1)O_(2)(LNO@NCM721)cathode shows stable cycling performance.Experimental and computational results have demonstrated that dendrite growth tolerance and physical contact in solid-state batteries can be reinforced by using LM interlayers for interfacial modification. 展开更多
关键词 all-solid-state batteries interface engineering liquid metals lithium metal anodes
下载PDF
Non-flammable long chain phosphate ester based electrolyte via competitive solventized structures for high-performance lithium metal batteries
19
作者 Li Liao Zhiqiang Han +16 位作者 Xuanjie Feng Pan Luo Jialin Song Yin Shen Xiaoshuang Luo Xinpeng Li Xuanzhong Wen Bo Yu Junchen Chen Bingshu Guo Mingshan Wang Yun Huang Hongmei Zhang Mengmeng Yin Jiangtao Liu Yuanhua Lin Xing Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期156-165,I0004,共11页
Safety remains a persistent challenge for high-energy-density lithium metal batteries(LMBs).The development of safe and non-flammable electrolytes is especially important in harsh conditions such as high temperatures.... Safety remains a persistent challenge for high-energy-density lithium metal batteries(LMBs).The development of safe and non-flammable electrolytes is especially important in harsh conditions such as high temperatures.Herein,a flame-retardant,low-cost and thermally stable long chain phosphate ester based(tributyl phosphate,TBP)electrolyte is reported,which can effectively enhance the cycling stability of highly loaded high-nickel LMBs with high safety through co-solvation strategy.The interfacial compatibility between TBP and electrode is effectively improved using a short-chain ether(glycol dimethyl ether,DME),and a specially competitive solvation structure is further constructed using lithium borate difluorooxalate(LiDFOB)to form the stable and inorganic-rich electrode interphases.Benefiting from the presence of the cathode electrolyte interphase(CEI)and solid electrolyte interphase(SEI)enriched with LiF and Li_(x)PO_(y)F_(z),the electrolyte demonstrates excellent cycling stability assembled using a 50μm lithium foil anode in combination with a high loading NMC811(15.4 mg cm^(-2))cathode,with 88%capacity retention after 120 cycles.Furthermore,the electrolyte exhibits excellent high-temperature characteristics when used in a 1-Ah pouch cell(N/P=0.26),and higher thermal runaway temperature(238℃)in the ARC(accelerating rate calorimeter)demonstrating high safety.This novel electrolyte adopts long-chain phosphate as the main solvent for the first time,and would provide a new idea for the development of extremely high safety and high-temperature electrolytes. 展开更多
关键词 Non-flammable electrolyte Long chain phosphate ester Solvation structure lithium metal batteries Battery safety
下载PDF
An ultrathin and robust single-ion conducting interfacial layer for dendrite-free lithium metal batteries
20
作者 Ting-Ting Lv Jia Liu +2 位作者 Li-Jie He Hong Yuan Tong-Qi Yuan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期414-421,共8页
The practical application of rechargeable lithium metal batteries(LMBs) encounters significant challenges due to the notorious dendrite growth triggered by uneven Li deposition behaviors. In this work,a mechanically r... The practical application of rechargeable lithium metal batteries(LMBs) encounters significant challenges due to the notorious dendrite growth triggered by uneven Li deposition behaviors. In this work,a mechanically robust and single-ion-conducting interfacial layer, fulfilled by the strategic integration of flexible cellulose acetate(CA) matrix with rigid graphene oxide(GO) and Li F fillers(termed the CGL layer), is rationally devised to serve as a stabilizer for dendrite-free lithium(Li) metal batteries. The GCL film exhibits favorable mechanical properties with high modulus and flexibility that help to relieve interface fluctuations. More crucially, the electron-donating carbonyl groups(C=O) enriched in GCL foster a strengthened correlation with Li^(+), which availably aids the Li^(+)desolvation process and expedites facile Li^(+)mobility, yielding exceptional Li^(+) transference number of 0.87. Such single-ion conductive properties regulate rapid and uniform interfacial transport kinetics, mitigating the growth of Li dendrites and the decomposition of electrolytes. Consequently, stable Li anode with prolonged cycle stabilities and flat deposition morphologies are realized. The Li||LiFePO_(4) full cells with CGL protective layer render an outstanding cycling capability of 500 cycles at 3 C, and an ultrahigh capacity retention of 99.99% for over 220 cycles even under harsh conditions. This work affords valuable insights into the interfacial regulation for achieving high-performance LMBs. 展开更多
关键词 Single-ion conductive Interfacial layer Cellulose acetate Dendrite-free morphologies lithium metal batteries
下载PDF
上一页 1 2 48 下一页 到第
使用帮助 返回顶部