In contemporary society, reducing carbon dioxide emissions and achieving sustainable development are paramount goals. One effective approach is to preserve existing RC (Reinforced Concrete) buildings rather than demol...In contemporary society, reducing carbon dioxide emissions and achieving sustainable development are paramount goals. One effective approach is to preserve existing RC (Reinforced Concrete) buildings rather than demolishing them for new construction. However, a significant challenge arises from the lack of elevator designs in many of these existing RC buildings. Adding an external elevator becomes crucial to solving accessibility issues, enhancing property value, and satisfying modern residential buildings using convenient requirements. However, the structural performance of external elevator wells remains understudied. This research is designed by the actual external elevator project into existing RC buildings in Jinzhong Rd, Shanghai City. Specifically, this research examines five different external elevator wells under nonlinear pushover analysis, each varying in the height of the RC (Reinforced Concrete) footing. By analyzing plastic hinge states, performance points, capacity curves, spectrum curves, layer displacement, and drift ratio, this research aims to provide a comprehensive understanding of how these structures of the external elevator well respond to seismic events. The findings are expected to serve as a valuable reference for future external elevator projects, ensuring the external elevator designs meet the seismic requirements. By emphasizing seismic resistance in the design phase, the research aims to enhance the overall safety and longevity of external elevator systems integrated into existing RC buildings.展开更多
A seismic-induced landslide is a common geological catastrophe that occurs in nature.The Wangjiayan landslide,which was triggered by the Wenchuan earthquake,is a typical case in point.The Wanjiayan landslide caused ma...A seismic-induced landslide is a common geological catastrophe that occurs in nature.The Wangjiayan landslide,which was triggered by the Wenchuan earthquake,is a typical case in point.The Wanjiayan landslide caused many casualties and resulted in enormous property loss.This study constructs a simple surficial failure model based on the upper bound approach of three-dimensional(3D)limit analysis to evaluate the slope stability of the Wangjiayan case,while a traditional two-dimensional(2D)analysis is also conducted as a reference for comparison with the results of the 3D analysis.A quasi-static calculation is used to study the effect of the earthquake in terms of horizontal ground acceleration,while a parametric study is conducted to evaluate the critical cohesion of slopes.Rather than employing a 3D analysis,using the 2D analysis yields an underestimation regarding the safety factor.In the Wangjiayan landslide,the difference in the factors of safety between the 3D and 2D analyses can reach 20%.The sliding surface morphology as determined by the 3D method is similar to actual morphology,and the parameters of both are also compared to analyze the reliability of the proposed 3D method.展开更多
The seismic capacity curves of three types of buildings including frame,frame-shear wall and shear wall ob- tained by pushover analysis under different lateral load patterns are compared with those from nonlinear time...The seismic capacity curves of three types of buildings including frame,frame-shear wall and shear wall ob- tained by pushover analysis under different lateral load patterns are compared with those from nonlinear time history analy- sis.Based on the numerical results obtained a two-phase load pattern:an inverted triangle(first mode)load pattern until the base shear force reaches β times its maximum value,V_(max)followed by a(x/H)~α form,here β and α being some coeffi- cients depending on the type of the structures considered,is proposed in the paper,which can provide excellent approxima- tion of the seismic capacity curve for low-to-mid-rise shear type buildings.Furthermore,it is shown both the two-phase load pattern proposed and the invariant uniform pattern can be used for low-to-mid-rise shear-bending type and low-rise bending type of buildings.No suitable load patterns have been found for high-rise buildings.展开更多
The pushover analysis (POA) procedure is difficult to apply to high-rise buildings, as it cannot account for the contributions of higher modes. To overcome this limitation, a modal pushover analysis (MPA) procedur...The pushover analysis (POA) procedure is difficult to apply to high-rise buildings, as it cannot account for the contributions of higher modes. To overcome this limitation, a modal pushover analysis (MPA) procedure was proposed by Chopra et al. (2001). However, invariable lateral force distributions are still adopted in the MPA. In this paper, an improved MPA procedure is presented to estimate the seismic demands of structures, considering the redistribution of inertia forces after the structure yields. This improved procedure is verified with numerical examples of 5-, 9- and 22-story buildings. It is concluded that the improved MPA procedure is more accurate than either the POA procedure or MPA procedure. In addition, the proposed procedure avoids a large computational effort by adopting a two-phase lateral force distribution..展开更多
Since most current seismic capacity evaluations of reinforced concrete (RC) frame structures are implemented by either static pushover analysis (PA) or dynamic time history analysis, with diverse settings of the p...Since most current seismic capacity evaluations of reinforced concrete (RC) frame structures are implemented by either static pushover analysis (PA) or dynamic time history analysis, with diverse settings of the plastic hinges (PHs) on such main structural components as columns, beams and walls, the complex behavior of shear failure at beam-column joints (BCJs) during major earthquakes is commonly neglected. This study proposes new nonlinear PA procedures that consider shear failure at BCJs and seek to assess the actual damage to RC structures. Based on the specifications of FEMA-356, a simplified joint model composed of two nonlinear cross struts placed diagonally over the location of the plastic hinge is established, allowing a sophisticated PA to be performed. To verify the validity of this method, the analytical results for the capacity curves and the failure mechanism derived from three different full-size RC frames are compared with the experimental measurements. By considering shear failure at BCJs, the proposed nonlinear analytical procedures can be used to estimate the structural behavior of RC frames, including seismic capacity and the progressive failure sequence of joints, in a precise and effective manner.展开更多
A pushover procedure with a load pattern based on the height-wise distribution of the combined modal story shear and torsional moment is proposed to estimate the seismic response of 3D asymmetric-plan building frames....A pushover procedure with a load pattern based on the height-wise distribution of the combined modal story shear and torsional moment is proposed to estimate the seismic response of 3D asymmetric-plan building frames. Contribution of the higher modes and torsional response of asymmetric-plan buildings are incorporated into the proposed load pattern. The proposed pushover method is a single-run procedure, which enables tracing the nonlinear response of the structure during the analysis and averts the elusiveness of conducting multiple pushover analyses. The proposed method has been used to estimate the response of two moment-resisting building frames with 9 and 20 stories. The obtained results indicate the appropriate accuracy and efficiency of the proposed procedure in estimating the trend of the drift profiles of the structures resulted from nonlinear time history analyses.展开更多
Six reinforced concrete frames with or without masonry infills were constructed and tested under horizontal cyclic loads. All six frames had identical details in which the transverse reinforcement in columns was provi...Six reinforced concrete frames with or without masonry infills were constructed and tested under horizontal cyclic loads. All six frames had identical details in which the transverse reinforcement in columns was provided by rectangular hoops that did not meet current ACI specifications for ductile frames. For comparison purposes, the columns in three of these frames were jacketed by carbon-fiber-reinforced-polymer (CFRP) sheets to avoid possible shear failure. A nonlinear pushover analysis, in which the force-deformation relationships of individual elements were developed based on ACI 318, FEMA 356, and Chen's model, was carried out for these frames and compared to test results. Both the failure mechanisms and impact of infills on the behaviors of these frames were examined in the study. Conclusions from the present analysis provide structural engineers with valuable information for evaluation and design of infilled concrete frame building structures.展开更多
In this study, inelastic nonlinear pushover analysis is performed on a 3-D model of a jacket-type offshore platform for the North Sea conditions. The structure' is modelled, analyzed and designed using finite element...In this study, inelastic nonlinear pushover analysis is performed on a 3-D model of a jacket-type offshore platform for the North Sea conditions. The structure' is modelled, analyzed and designed using finite element software SACS (structural analysis computer system). The behavior of jackets with different bracing systems under pushover analysis is examined. Further, by varying the leg batter values of the platform, weight optimization is carried-out. Soil-structure interaction effect is considered in the analyses and the results are compared with the hypothetical fixed-support end condition. Static and dynamic pushover analyses are performed by using wave and seismic loads respectively. From the analyses, it is found that the optimum leg batter varies between 15 to 16 and 2% of weight saving is achieved. Moreover, it has been observed that the type of bracing does not play a major role in the seismic design of jacket platform considering the soil-structure interaction.展开更多
Recently, the evaluation of seismic performance of existing buildings has received a great attention. Current research works and observations indicate that The Sudan have low-to-moderate seismic regions. Most of exist...Recently, the evaluation of seismic performance of existing buildings has received a great attention. Current research works and observations indicate that The Sudan have low-to-moderate seismic regions. Most of existing buildings are designed only for gravity load. The objective of this paper is to assess the seismic performance of existing RC buildings in The Sudan. Four typical buildings were investigated using pushover analysis according to ATC-40. They were designed according to the Regulations for earthquake-resistant design of buildings in Egypt (ESEE) and International Building Code (IBC2012). Results showed that the buildings designed considering by ESEE and IBC2012 loads were found adequate and satisfied the Immediate Occupancy (IO) acceptance criteria according to ATC-40. The comparison of the pushover curve shows that the stiffness of frames is larger when using ESEE Regulations compared to the IBC2012 design. This means that ESEE design procedure provides a greater capability to resist seismic load than the IBC2012 design.展开更多
A three dimensional finite element of nonlinear pushover analysis for short span Reinforced Concrete (RC) bridge with circular piers cross section is modeling to present effects of soil structural interaction (SSI). S...A three dimensional finite element of nonlinear pushover analysis for short span Reinforced Concrete (RC) bridge with circular piers cross section is modeling to present effects of soil structural interaction (SSI). Structural elements models are including linear foundation springs modeling, and nonlinear RC piers modeling. The paper succeeded to present the SSI effects of nonlinear pushover analysis of short spans RC bridges to determine the significant effects on dynamic characteristics and displacement capacity of short span RC bridges performance;that is increasing within range 11% to 20% compared to baseline pushover analysis of bridge without SSI effects. Results show the bridge stiffness decreases due to SSI effects on the bridge support for more flexible soils types that generates large displacement, with corresponding less base shear in bridge piers and footings by average percentage 12% and 18%, which is important for structural evaluation for new bridge construction and also, for strengthening and repair works evaluation of existing bridges.展开更多
We present the numerical simulation results of a model granular assembly formed by spherical particles with tIertzian interaction subjected to a simple shear in the athermal quasi-static limit. The stress-strain curve...We present the numerical simulation results of a model granular assembly formed by spherical particles with tIertzian interaction subjected to a simple shear in the athermal quasi-static limit. The stress-strain curve is shown to separate into smooth, elastic branches followed by a subsequent plastic event. Mode analysis shows that the lowest-frequency vibrational mode is more localized, and eigenvalues and participation ratios of low- frequency modes exhibit similar power-law behavior as the system approaches plastic instability, indicating that the nature of plastic events in the granular system is also a saddle node bifurcation. The analysis of projection and spatial structure shows that over 75% contributions to the non-affine displacement field at a plastic instability come from the lowest-frequency mode, and the lowest-frequency mode is strongly spatially correlated with local plastic rearrangements, inferring that the lowest-frequency mode could be used as a predictor for future plastic rearrangements in the disordered system jammed marginally.展开更多
This paper presents a new procedure to transform an SSI system into an equivalent SDOF system using twice equivalence. A pushover analysis procedure based on the capacity spectrum method for buildings with SSI effects...This paper presents a new procedure to transform an SSI system into an equivalent SDOF system using twice equivalence. A pushover analysis procedure based on the capacity spectrum method for buildings with SSI effects (PASSI) is then established based on the equivalent SDOF system, and the modified response spectrum and equivalent capacity spectrum are obtained. Furthermore, the approximate formulas to obtain the dynamic stiffness of foundations are suggested. Three steel buildings with different story heights (3, 9 and 20) including SSI effects are analyzed under two far-field and two near-field historical records and an artificial seismic time history using the two PASSI procedures and the nonlinear response history analysis (NLhRHA) method. The results are compared and discussed. Finally, combined with seismic design response spectrum, the nonlinear seismic response of a 9-story building with SSI effects is analyzed using the PASSI procedures, and its seismic performance is evaluated according to the Chinese 'Code for Seismic Design of Buildings. The feasibility of the proposed procedure is verified.展开更多
The quasi-static analysis method introduced by API RP 2P is well known and accepted as a very useful mooring analysis method. In the early design stage, this method is widely used for preliminary analysis and mooring ...The quasi-static analysis method introduced by API RP 2P is well known and accepted as a very useful mooring analysis method. In the early design stage, this method is widely used for preliminary analysis and mooring parameter selection. However, the quasi-static method of API RP 2P is developed for single-floating-body condition, i. e., only one floating body is considered in the computation procedure. Difficulties arise when it is used for the analysis of a CALM system, which is comprised of two floating bodies (tanker and buoy). This paper presents an analysis procedure for a two-floating-body system based on the quasi-static procedure of API RP 2P with some modifications reflecting special characteristics of the CALM system. Finally, the analysis results of a CALM system are given to illustrate the use of this procedure.展开更多
Load pattern selection is one of the critical issues in pushover analysis (POA) when the influence of higher modes is evident. In terms of interstory drift, comparisons between the nonlinear time history analysis (NL-...Load pattern selection is one of the critical issues in pushover analysis (POA) when the influence of higher modes is evident. In terms of interstory drift, comparisons between the nonlinear time history analysis (NL-THA) and the pushover analysis (POA) were conducted for three typical RC frame buildings under a variety of ground motion levels. Eight typical earthquake inputs, including four earthquake records and four artificial earthquake waves, were employed as the input of NL-THA; five typical lateral load patterns were considered in POA. By means of modal participation factor, the higher mode effect in POA was quantified considering floor numbers and the ground motion intensity. Suggestions about load pattern selection in POA were provided when higher mode influence was found evident.展开更多
In the recent earthquakes, concrete structures have been severely damaged or collapsed, which has raised questions against the seismic adequacy of existing buildings. These existing reinforced concrete buildings need ...In the recent earthquakes, concrete structures have been severely damaged or collapsed, which has raised questions against the seismic adequacy of existing buildings. These existing reinforced concrete buildings need to be evaluated to determine the capacity to resist seismic loads. The behavior of a building during earthquakes depends critically on its overall shape, size and geometry. Conventional approach to earthquake resistant design of buildings depends upon providing the building with strength, stiffness and inelastic deformation capacity which are great enough to withstand a given level of earthquake-generated force. This is generally accomplished through the selection of an appropriate building configuration and the careful detailing of structural members. In this research, nonlinear pushover analysis has been used to evaluate the seismic performance of three buildings with three different plans having same area and height. This method determines the base shear capacity of the building and performance level of each part of building under varying intensity of seismic force. The results of effects of different plan on seismic response of buildings have been presented in terms of displacement, base shear and plastic hinge pattern.展开更多
The quasi-static explicit finite element method (FEM) and element free Galerkin (EFG) method are applied to trace the post-buckling equilibrium path of thin-walled members in this paper. The factors that primarily con...The quasi-static explicit finite element method (FEM) and element free Galerkin (EFG) method are applied to trace the post-buckling equilibrium path of thin-walled members in this paper. The factors that primarily control the explicit buckling solutions, such as the computation time, loading function and dynamic relaxation, are investigated and suggested for the buckling analysis of thin-walled members. Three examples of different buckling modes, namely snap-through, overall and local buckling, are studied based on the implicit FEM, quasi-static explicit FEM and EFG method via the commercial software LS-DYNA. The convergence rate and accuracy of the explicit methods are compared with the conventional implicit arc-length method. It is drawn that EFG quasi-static explicit buckling analysis presents the same accurate results as implicit finite element solution, but is without convergence problem and of less-consumption of computing time than FEM.展开更多
For structural design and assessment of reinforced concrete members, the nonlinear analysis has become an important tool. The purpose of the pushover analysis is to assess the structural performance by estimating the ...For structural design and assessment of reinforced concrete members, the nonlinear analysis has become an important tool. The purpose of the pushover analysis is to assess the structural performance by estimating the strength and deformation capacities using static, nonlinear analysis and comparing these capacities with the demands at the corresponding performance levels. This paper aims to compare the results given by IBC2009 code and ESEE regulations. In this paper, four RC frames having 5, 15, 20 and 30 storeys were designed for seismicity according to both the recently adopted seismic code in Abu Dhabi (IBC2009) and the ESEE regulations. A pushover analysis is carried out for these buildings using SAP2000 (Ver. 15) and the ultimate capacities of the buildings are established. The obtained pushover curves and plastic hinges distributions are used to compare between the IBC2009 code and ESEE regulations. The comparison showed that there was variation in the obtained results by the two codes and the buildings designed by IBC2009 code were more vulnerable.展开更多
The main objective of this paper is to evaluate the seismic response of buildings of typical reinforced concrete frames when concrete starts to deteriorate gradually and to make a comparison between the base shear and...The main objective of this paper is to evaluate the seismic response of buildings of typical reinforced concrete frames when concrete starts to deteriorate gradually and to make a comparison between the base shear and the displacement at different stages of earthquake loading. Typical 5, 15, 20 and 30-storey reinforced concrete frames have been designed for seismicity according to the recently adopted seismic code in Abu Dhabi, ACI 318-08/IBC 2009 code. A pushover analysis has been performed to these four buildings by using SAP 2000. Twenty-four models have been created (6 models for each building) by decreasing the concrete strength gradually from 4000 psi (281 kg/cm<sup>2</sup>) to 1500 psi (105 kg/cm<sup>2</sup>). This is to simulate the effect of harsh environment on the strength of concrete in existing buildings.展开更多
文摘In contemporary society, reducing carbon dioxide emissions and achieving sustainable development are paramount goals. One effective approach is to preserve existing RC (Reinforced Concrete) buildings rather than demolishing them for new construction. However, a significant challenge arises from the lack of elevator designs in many of these existing RC buildings. Adding an external elevator becomes crucial to solving accessibility issues, enhancing property value, and satisfying modern residential buildings using convenient requirements. However, the structural performance of external elevator wells remains understudied. This research is designed by the actual external elevator project into existing RC buildings in Jinzhong Rd, Shanghai City. Specifically, this research examines five different external elevator wells under nonlinear pushover analysis, each varying in the height of the RC (Reinforced Concrete) footing. By analyzing plastic hinge states, performance points, capacity curves, spectrum curves, layer displacement, and drift ratio, this research aims to provide a comprehensive understanding of how these structures of the external elevator well respond to seismic events. The findings are expected to serve as a valuable reference for future external elevator projects, ensuring the external elevator designs meet the seismic requirements. By emphasizing seismic resistance in the design phase, the research aims to enhance the overall safety and longevity of external elevator systems integrated into existing RC buildings.
基金National Natural Science Foundation of China under Grant Nos.52378335 and 52322808.
文摘A seismic-induced landslide is a common geological catastrophe that occurs in nature.The Wangjiayan landslide,which was triggered by the Wenchuan earthquake,is a typical case in point.The Wanjiayan landslide caused many casualties and resulted in enormous property loss.This study constructs a simple surficial failure model based on the upper bound approach of three-dimensional(3D)limit analysis to evaluate the slope stability of the Wangjiayan case,while a traditional two-dimensional(2D)analysis is also conducted as a reference for comparison with the results of the 3D analysis.A quasi-static calculation is used to study the effect of the earthquake in terms of horizontal ground acceleration,while a parametric study is conducted to evaluate the critical cohesion of slopes.Rather than employing a 3D analysis,using the 2D analysis yields an underestimation regarding the safety factor.In the Wangjiayan landslide,the difference in the factors of safety between the 3D and 2D analyses can reach 20%.The sliding surface morphology as determined by the 3D method is similar to actual morphology,and the parameters of both are also compared to analyze the reliability of the proposed 3D method.
文摘The seismic capacity curves of three types of buildings including frame,frame-shear wall and shear wall ob- tained by pushover analysis under different lateral load patterns are compared with those from nonlinear time history analy- sis.Based on the numerical results obtained a two-phase load pattern:an inverted triangle(first mode)load pattern until the base shear force reaches β times its maximum value,V_(max)followed by a(x/H)~α form,here β and α being some coeffi- cients depending on the type of the structures considered,is proposed in the paper,which can provide excellent approxima- tion of the seismic capacity curve for low-to-mid-rise shear type buildings.Furthermore,it is shown both the two-phase load pattern proposed and the invariant uniform pattern can be used for low-to-mid-rise shear-bending type and low-rise bending type of buildings.No suitable load patterns have been found for high-rise buildings.
基金Supported by: National Natural Science Foundation of China Under Grant No.50608024 and No.50538050 Opening Laboratory of Earthquake Engineering and Engineering Vibration Foundation Under Grant No.2007001
文摘The pushover analysis (POA) procedure is difficult to apply to high-rise buildings, as it cannot account for the contributions of higher modes. To overcome this limitation, a modal pushover analysis (MPA) procedure was proposed by Chopra et al. (2001). However, invariable lateral force distributions are still adopted in the MPA. In this paper, an improved MPA procedure is presented to estimate the seismic demands of structures, considering the redistribution of inertia forces after the structure yields. This improved procedure is verified with numerical examples of 5-, 9- and 22-story buildings. It is concluded that the improved MPA procedure is more accurate than either the POA procedure or MPA procedure. In addition, the proposed procedure avoids a large computational effort by adopting a two-phase lateral force distribution..
文摘Since most current seismic capacity evaluations of reinforced concrete (RC) frame structures are implemented by either static pushover analysis (PA) or dynamic time history analysis, with diverse settings of the plastic hinges (PHs) on such main structural components as columns, beams and walls, the complex behavior of shear failure at beam-column joints (BCJs) during major earthquakes is commonly neglected. This study proposes new nonlinear PA procedures that consider shear failure at BCJs and seek to assess the actual damage to RC structures. Based on the specifications of FEMA-356, a simplified joint model composed of two nonlinear cross struts placed diagonally over the location of the plastic hinge is established, allowing a sophisticated PA to be performed. To verify the validity of this method, the analytical results for the capacity curves and the failure mechanism derived from three different full-size RC frames are compared with the experimental measurements. By considering shear failure at BCJs, the proposed nonlinear analytical procedures can be used to estimate the structural behavior of RC frames, including seismic capacity and the progressive failure sequence of joints, in a precise and effective manner.
文摘A pushover procedure with a load pattern based on the height-wise distribution of the combined modal story shear and torsional moment is proposed to estimate the seismic response of 3D asymmetric-plan building frames. Contribution of the higher modes and torsional response of asymmetric-plan buildings are incorporated into the proposed load pattern. The proposed pushover method is a single-run procedure, which enables tracing the nonlinear response of the structure during the analysis and averts the elusiveness of conducting multiple pushover analyses. The proposed method has been used to estimate the response of two moment-resisting building frames with 9 and 20 stories. The obtained results indicate the appropriate accuracy and efficiency of the proposed procedure in estimating the trend of the drift profiles of the structures resulted from nonlinear time history analyses.
基金Science Council of Chinese Taipei Under Grant No. SC-92-2625-Z-027-003
文摘Six reinforced concrete frames with or without masonry infills were constructed and tested under horizontal cyclic loads. All six frames had identical details in which the transverse reinforcement in columns was provided by rectangular hoops that did not meet current ACI specifications for ductile frames. For comparison purposes, the columns in three of these frames were jacketed by carbon-fiber-reinforced-polymer (CFRP) sheets to avoid possible shear failure. A nonlinear pushover analysis, in which the force-deformation relationships of individual elements were developed based on ACI 318, FEMA 356, and Chen's model, was carried out for these frames and compared to test results. Both the failure mechanisms and impact of infills on the behaviors of these frames were examined in the study. Conclusions from the present analysis provide structural engineers with valuable information for evaluation and design of infilled concrete frame building structures.
文摘In this study, inelastic nonlinear pushover analysis is performed on a 3-D model of a jacket-type offshore platform for the North Sea conditions. The structure' is modelled, analyzed and designed using finite element software SACS (structural analysis computer system). The behavior of jackets with different bracing systems under pushover analysis is examined. Further, by varying the leg batter values of the platform, weight optimization is carried-out. Soil-structure interaction effect is considered in the analyses and the results are compared with the hypothetical fixed-support end condition. Static and dynamic pushover analyses are performed by using wave and seismic loads respectively. From the analyses, it is found that the optimum leg batter varies between 15 to 16 and 2% of weight saving is achieved. Moreover, it has been observed that the type of bracing does not play a major role in the seismic design of jacket platform considering the soil-structure interaction.
文摘Recently, the evaluation of seismic performance of existing buildings has received a great attention. Current research works and observations indicate that The Sudan have low-to-moderate seismic regions. Most of existing buildings are designed only for gravity load. The objective of this paper is to assess the seismic performance of existing RC buildings in The Sudan. Four typical buildings were investigated using pushover analysis according to ATC-40. They were designed according to the Regulations for earthquake-resistant design of buildings in Egypt (ESEE) and International Building Code (IBC2012). Results showed that the buildings designed considering by ESEE and IBC2012 loads were found adequate and satisfied the Immediate Occupancy (IO) acceptance criteria according to ATC-40. The comparison of the pushover curve shows that the stiffness of frames is larger when using ESEE Regulations compared to the IBC2012 design. This means that ESEE design procedure provides a greater capability to resist seismic load than the IBC2012 design.
文摘A three dimensional finite element of nonlinear pushover analysis for short span Reinforced Concrete (RC) bridge with circular piers cross section is modeling to present effects of soil structural interaction (SSI). Structural elements models are including linear foundation springs modeling, and nonlinear RC piers modeling. The paper succeeded to present the SSI effects of nonlinear pushover analysis of short spans RC bridges to determine the significant effects on dynamic characteristics and displacement capacity of short span RC bridges performance;that is increasing within range 11% to 20% compared to baseline pushover analysis of bridge without SSI effects. Results show the bridge stiffness decreases due to SSI effects on the bridge support for more flexible soils types that generates large displacement, with corresponding less base shear in bridge piers and footings by average percentage 12% and 18%, which is important for structural evaluation for new bridge construction and also, for strengthening and repair works evaluation of existing bridges.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11272048 and 51239006the European Commission Marie Curie Actions under Grant No IRSES-294976
文摘We present the numerical simulation results of a model granular assembly formed by spherical particles with tIertzian interaction subjected to a simple shear in the athermal quasi-static limit. The stress-strain curve is shown to separate into smooth, elastic branches followed by a subsequent plastic event. Mode analysis shows that the lowest-frequency vibrational mode is more localized, and eigenvalues and participation ratios of low- frequency modes exhibit similar power-law behavior as the system approaches plastic instability, indicating that the nature of plastic events in the granular system is also a saddle node bifurcation. The analysis of projection and spatial structure shows that over 75% contributions to the non-affine displacement field at a plastic instability come from the lowest-frequency mode, and the lowest-frequency mode is strongly spatially correlated with local plastic rearrangements, inferring that the lowest-frequency mode could be used as a predictor for future plastic rearrangements in the disordered system jammed marginally.
基金National Natural Science Foundation of China Under Granted No.50538020Youth Science Foundation of Harbin City Under Grand No.2005AFXXJ015Youth Science Foundation of Heilongjiang Institute of Science and Technology
文摘This paper presents a new procedure to transform an SSI system into an equivalent SDOF system using twice equivalence. A pushover analysis procedure based on the capacity spectrum method for buildings with SSI effects (PASSI) is then established based on the equivalent SDOF system, and the modified response spectrum and equivalent capacity spectrum are obtained. Furthermore, the approximate formulas to obtain the dynamic stiffness of foundations are suggested. Three steel buildings with different story heights (3, 9 and 20) including SSI effects are analyzed under two far-field and two near-field historical records and an artificial seismic time history using the two PASSI procedures and the nonlinear response history analysis (NLhRHA) method. The results are compared and discussed. Finally, combined with seismic design response spectrum, the nonlinear seismic response of a 9-story building with SSI effects is analyzed using the PASSI procedures, and its seismic performance is evaluated according to the Chinese 'Code for Seismic Design of Buildings. The feasibility of the proposed procedure is verified.
文摘The quasi-static analysis method introduced by API RP 2P is well known and accepted as a very useful mooring analysis method. In the early design stage, this method is widely used for preliminary analysis and mooring parameter selection. However, the quasi-static method of API RP 2P is developed for single-floating-body condition, i. e., only one floating body is considered in the computation procedure. Difficulties arise when it is used for the analysis of a CALM system, which is comprised of two floating bodies (tanker and buoy). This paper presents an analysis procedure for a two-floating-body system based on the quasi-static procedure of API RP 2P with some modifications reflecting special characteristics of the CALM system. Finally, the analysis results of a CALM system are given to illustrate the use of this procedure.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50278029)the National Basic Research Program of China(Grant No.2007CB714202)
文摘Load pattern selection is one of the critical issues in pushover analysis (POA) when the influence of higher modes is evident. In terms of interstory drift, comparisons between the nonlinear time history analysis (NL-THA) and the pushover analysis (POA) were conducted for three typical RC frame buildings under a variety of ground motion levels. Eight typical earthquake inputs, including four earthquake records and four artificial earthquake waves, were employed as the input of NL-THA; five typical lateral load patterns were considered in POA. By means of modal participation factor, the higher mode effect in POA was quantified considering floor numbers and the ground motion intensity. Suggestions about load pattern selection in POA were provided when higher mode influence was found evident.
文摘In the recent earthquakes, concrete structures have been severely damaged or collapsed, which has raised questions against the seismic adequacy of existing buildings. These existing reinforced concrete buildings need to be evaluated to determine the capacity to resist seismic loads. The behavior of a building during earthquakes depends critically on its overall shape, size and geometry. Conventional approach to earthquake resistant design of buildings depends upon providing the building with strength, stiffness and inelastic deformation capacity which are great enough to withstand a given level of earthquake-generated force. This is generally accomplished through the selection of an appropriate building configuration and the careful detailing of structural members. In this research, nonlinear pushover analysis has been used to evaluate the seismic performance of three buildings with three different plans having same area and height. This method determines the base shear capacity of the building and performance level of each part of building under varying intensity of seismic force. The results of effects of different plan on seismic response of buildings have been presented in terms of displacement, base shear and plastic hinge pattern.
文摘The quasi-static explicit finite element method (FEM) and element free Galerkin (EFG) method are applied to trace the post-buckling equilibrium path of thin-walled members in this paper. The factors that primarily control the explicit buckling solutions, such as the computation time, loading function and dynamic relaxation, are investigated and suggested for the buckling analysis of thin-walled members. Three examples of different buckling modes, namely snap-through, overall and local buckling, are studied based on the implicit FEM, quasi-static explicit FEM and EFG method via the commercial software LS-DYNA. The convergence rate and accuracy of the explicit methods are compared with the conventional implicit arc-length method. It is drawn that EFG quasi-static explicit buckling analysis presents the same accurate results as implicit finite element solution, but is without convergence problem and of less-consumption of computing time than FEM.
文摘For structural design and assessment of reinforced concrete members, the nonlinear analysis has become an important tool. The purpose of the pushover analysis is to assess the structural performance by estimating the strength and deformation capacities using static, nonlinear analysis and comparing these capacities with the demands at the corresponding performance levels. This paper aims to compare the results given by IBC2009 code and ESEE regulations. In this paper, four RC frames having 5, 15, 20 and 30 storeys were designed for seismicity according to both the recently adopted seismic code in Abu Dhabi (IBC2009) and the ESEE regulations. A pushover analysis is carried out for these buildings using SAP2000 (Ver. 15) and the ultimate capacities of the buildings are established. The obtained pushover curves and plastic hinges distributions are used to compare between the IBC2009 code and ESEE regulations. The comparison showed that there was variation in the obtained results by the two codes and the buildings designed by IBC2009 code were more vulnerable.
文摘The main objective of this paper is to evaluate the seismic response of buildings of typical reinforced concrete frames when concrete starts to deteriorate gradually and to make a comparison between the base shear and the displacement at different stages of earthquake loading. Typical 5, 15, 20 and 30-storey reinforced concrete frames have been designed for seismicity according to the recently adopted seismic code in Abu Dhabi, ACI 318-08/IBC 2009 code. A pushover analysis has been performed to these four buildings by using SAP 2000. Twenty-four models have been created (6 models for each building) by decreasing the concrete strength gradually from 4000 psi (281 kg/cm<sup>2</sup>) to 1500 psi (105 kg/cm<sup>2</sup>). This is to simulate the effect of harsh environment on the strength of concrete in existing buildings.