In order to solve the problems of weak prediction stability and generalization ability of a neural network algorithm model in the yarn quality prediction research for small samples,a prediction model based on an AdaBo...In order to solve the problems of weak prediction stability and generalization ability of a neural network algorithm model in the yarn quality prediction research for small samples,a prediction model based on an AdaBoost algorithm(AdaBoost model) was established.A prediction model based on a linear regression algorithm(LR model) and a prediction model based on a multi-layer perceptron neural network algorithm(MLP model) were established for comparison.The prediction experiments of the yarn evenness and the yarn strength were implemented.Determination coefficients and prediction errors were used to evaluate the prediction accuracy of these models,and the K-fold cross validation was used to evaluate the generalization ability of these models.In the prediction experiments,the determination coefficient of the yarn evenness prediction result of the AdaBoost model is 76% and 87% higher than that of the LR model and the MLP model,respectively.The determination coefficient of the yarn strength prediction result of the AdaBoost model is slightly higher than that of the other two models.Considering that the yarn evenness dataset has a weaker linear relationship with the cotton dataset than that of the yarn strength dataset in this paper,the AdaBoost model has the best adaptability for the nonlinear dataset among the three models.In addition,the AdaBoost model shows generally better results in the cross-validation experiments and the series of prediction experiments at eight different training set sample sizes.It is proved that the AdaBoost model not only has good prediction accuracy but also has good prediction stability and generalization ability for small samples.展开更多
In airborne gamma ray spectrum processing,different analysis methods,technical requirements,analysis models,and calculation methods need to be established.To meet the engineering practice requirements of airborne gamm...In airborne gamma ray spectrum processing,different analysis methods,technical requirements,analysis models,and calculation methods need to be established.To meet the engineering practice requirements of airborne gamma-ray measurements and improve computational efficiency,an improved shuffled frog leaping algorithm-particle swarm optimization convolutional neural network(SFLA-PSO CNN)for large-sample quantitative analysis of airborne gamma-ray spectra is proposed herein.This method was used to train the weight of the neural network,optimize the structure of the network,delete redundant connections,and enable the neural network to acquire the capability of quantitative spectrum processing.In full-spectrum data processing,this method can perform the functions of energy spectrum peak searching and peak area calculations.After network training,the mean SNR and RMSE of the spectral lines were 31.27 and 2.75,respectively,satisfying the demand for noise reduction.To test the processing ability of the algorithm in large samples of airborne gamma spectra,this study considered the measured data from the Saihangaobi survey area as an example to conduct data spectral analysis.The results show that calculation of the single-peak area takes only 0.13~0.15 ms,and the average relative errors of the peak area in the U,Th,and K spectra are 3.11,9.50,and 6.18%,indicating the high processing efficiency and accuracy of this algorithm.The performance of the model can be further improved by optimizing related parameters,but it can already meet the requirements of practical engineering measurement.This study provides a new idea for the full-spectrum processing of airborne gamma rays.展开更多
Clustering, in data mining, is a useful technique for discovering interesting data distributions and patterns in the underlying data, and has many application fields, such as statistical data analysis, pattern recogni...Clustering, in data mining, is a useful technique for discovering interesting data distributions and patterns in the underlying data, and has many application fields, such as statistical data analysis, pattern recognition, image processing, and etc. We combine sampling technique with DBSCAN algorithm to cluster large spatial databases, and two sampling based DBSCAN (SDBSCAN) algorithms are developed. One algorithm introduces sampling technique inside DBSCAN, and the other uses sampling procedure outside DBSCAN. Experimental results demonstrate that our algorithms are effective and efficient in clustering large scale spatial databases.展开更多
For a class of non-uniform output sampling hybrid system with actuator faults and bounded disturbances,an iterative learning fault diagnosis algorithm is proposed.Firstly,in order to measure the impact of fault on sys...For a class of non-uniform output sampling hybrid system with actuator faults and bounded disturbances,an iterative learning fault diagnosis algorithm is proposed.Firstly,in order to measure the impact of fault on system between every consecutive output sampling instants,the actual fault function is transformed to obtain an equivalent fault model by using the integral mean value theorem,then the non-uniform sampling hybrid system is converted to continuous systems with timevarying delay based on the output delay method.Afterwards,an observer-based fault diagnosis filter with virtual fault is designed to estimate the equivalent fault,and the iterative learning regulation algorithm is chosen to update the virtual fault repeatedly to make it approximate the actual equivalent fault after some iterative learning trials,so the algorithm can detect and estimate the system faults adaptively.Simulation results of an electro-mechanical control system model with different types of faults illustrate the feasibility and effectiveness of this algorithm.展开更多
In order to prevent cracking appeared in the work-piece during the hot stamping operation,this paper proposes a hybrid optimization method based on Hammersley sequence sampling( HSS),finite analysis,backpropagation( B...In order to prevent cracking appeared in the work-piece during the hot stamping operation,this paper proposes a hybrid optimization method based on Hammersley sequence sampling( HSS),finite analysis,backpropagation( BP) neural network and genetic algorithm( GA). The mechanical properties of high strength boron steel are characterized on the basis of uniaxial tensile test at elevated temperatures. The samples of process parameters are chosen via the HSS that encourages the exploration throughout the design space and hence achieves better discovery of possible global optimum in the solution space. Meanwhile, numerical simulation is carried out to predict the forming quality for the optimized design. A BP neural network model is developed to obtain the mathematical relationship between optimization goal and design variables,and genetic algorithm is used to optimize the process parameters. Finally,the results of numerical simulation are compared with those of production experiment to demonstrate that the optimization strategy proposed in the paper is feasible.展开更多
We introduce the potential-decomposition strategy (PDS), which can be used in Markov chain Monte Carlo sampling algorithms. PDS can be designed to make particles move in a modified potential that favors diffusion in...We introduce the potential-decomposition strategy (PDS), which can be used in Markov chain Monte Carlo sampling algorithms. PDS can be designed to make particles move in a modified potential that favors diffusion in phase space, then, by rejecting some trial samples, the target distributions can be sampled in an unbiased manner. Furthermore, if the accepted trial samples are insumcient, they can be recycled as initial states to form more unbiased samples. This strategy can greatly improve efficiency when the original potential has multiple metastable states separated by large barriers. We apply PDS to the 2d Ising model and a double-well potential model with a large barrier, demonstrating in these two representative examples that convergence is accelerated by orders of magnitude.展开更多
AIM To detect blood withdrawal for patients with arterial blood pressure monitoring to increase patient safety and provide better sample dating.METHODS Blood pressure information obtained from a patient monitor was fe...AIM To detect blood withdrawal for patients with arterial blood pressure monitoring to increase patient safety and provide better sample dating.METHODS Blood pressure information obtained from a patient monitor was fed as a real-time data stream to an experimental medical framework. This framework was connected to an analytical application which observes changes in systolic, diastolic and mean pressure to determine anomalies in the continuous data stream. Detection was based on an increased mean blood pressure caused by the closing of the withdrawal three-way tap and an absence of systolic and diastolic measurements during this manipulation. For evaluation of the proposed algorithm, measured data from animal studies in healthy pigs were used.RESULTS Using this novel approach for processing real-time measurement data of arterial pressure monitoring, the exact time of blood withdrawal could be successfully detected retrospectively and in real-time. The algorithm was able to detect 422 of 434(97%) blood withdrawals for blood gas analysis in the retrospective analysis of 7 study trials. Additionally, 64 sampling events for other procedures like laboratory and activated clotting time analyses were detected. The proposed algorithm achieved a sensitivity of 0.97, a precision of 0.96 and an F1 score of 0.97.CONCLUSION Arterial blood pressure monitoring data can be used toperform an accurate identification of individual blood samplings in order to reduce sample mix-ups and thereby increase patient safety.展开更多
Random sampling algorithm was proposed firstly by Schnorr in 2003 to find short lattice vectors,as an alternative to enumeration.The follow-up developments in random sampling were mainly proposed by Fukase and Kashiwa...Random sampling algorithm was proposed firstly by Schnorr in 2003 to find short lattice vectors,as an alternative to enumeration.The follow-up developments in random sampling were mainly proposed by Fukase and Kashiwabara in 2015 and Aono and Nguyen in 2017.Although they extended the sampling space compared to Schnorr's work through the natural number representation,they did not show how to sample specifically in practice and what vectors should be sampled,in order to find short enough lattice vectors.In this paper,the authors firstly introduce a practical random sampling algorithm under some reasonable assumptions which can find short enough lattice vectors efficiently.Then,as an application of this new random sampling algorithm,the authors show that it can improve the performance of progressive BKZ algorithm in practice.Finally,the authors solve the Darmstadt's Lattice Challenge and get a series of new records in the dimension from 500 to 825,using the improved progressive BKZ algorithm.展开更多
In this paper,four pattern recognition methods are set forth.Based on plane projection of samples and analysis of typical samples along with the few pattern recognition methods,the PTR algorithm for recognizing variou...In this paper,four pattern recognition methods are set forth.Based on plane projection of samples and analysis of typical samples along with the few pattern recognition methods,the PTR algorithm for recognizing various structure samples is proposed.Also two examples are given and these show the PTR algorithm is effective.展开更多
Surrogate models have shown to be effective in assisting evolutionary algorithms(EAs)for solving computationally expensive complex optimization problems.However,the effectiveness of the existing surrogate-assisted evo...Surrogate models have shown to be effective in assisting evolutionary algorithms(EAs)for solving computationally expensive complex optimization problems.However,the effectiveness of the existing surrogate-assisted evolutionary algorithms still needs to be improved.A data-driven evolutionary sampling optimization(DESO)framework is proposed,where at each generation it randomly employs one of two evolutionary sampling strategies,surrogate screening and surrogate local search based on historical data,to effectively balance global and local search.In DESO,the radial basis function(RBF)is used as the surrogate model in the sampling strategy,and different degrees of the evolutionary process are used to sample candidate points.The sampled points by sampling strategies are evaluated,and then added into the database for the updating surrogate model and population in the next sampling.To get the insight of DESO,extensive experiments and analysis of DESO have been performed.The proposed algorithm presents superior computational efficiency and robustness compared with five state-of-the-art algorithms on benchmark problems from 20 to 200 dimensions.Besides,DESO is applied to an airfoil design problem to show its effectiveness.展开更多
Coupling Bayes’Theorem with a two-dimensional(2D)groundwater solute advection-diffusion transport equation allows an inverse model to be established to identify a set of contamination source parameters including sour...Coupling Bayes’Theorem with a two-dimensional(2D)groundwater solute advection-diffusion transport equation allows an inverse model to be established to identify a set of contamination source parameters including source intensity(M),release location(0 X,0 Y)and release time(0 T),based on monitoring well data.To address the issues of insufficient monitoring wells or weak correlation between monitoring data and model parameters,a monitoring well design optimization approach was developed based on the Bayesian formula and information entropy.To demonstrate how the model works,an exemplar problem with an instantaneous release of a contaminant in a confined groundwater aquifer was employed.The information entropy of the model parameters posterior distribution was used as a criterion to evaluate the monitoring data quantity index.The optimal monitoring well position and monitoring frequency were solved by the two-step Monte Carlo method and differential evolution algorithm given a known well monitoring locations and monitoring events.Based on the optimized monitoring well position and sampling frequency,the contamination source was identified by an improved Metropolis algorithm using the Latin hypercube sampling approach.The case study results show that the following parameters were obtained:1)the optimal monitoring well position(D)is at(445,200);and 2)the optimal monitoring frequency(Δt)is 7,providing that the monitoring events is set as 5 times.Employing the optimized monitoring well position and frequency,the mean errors of inverse modeling results in source parameters(M,X0,Y0,T0)were 9.20%,0.25%,0.0061%,and 0.33%,respectively.The optimized monitoring well position and sampling frequency canIt was also learnt that the improved Metropolis-Hastings algorithm(a Markov chain Monte Carlo method)can make the inverse modeling result independent of the initial sampling points and achieves an overall optimization,which significantly improved the accuracy and numerical stability of the inverse modeling results.展开更多
Based on time delay technology and MUSIC algorithm, a novel estimating multiple frequencies approach of signal with sampling rate which is least Nyquist sampling rate is presented in this paper. With choosing delay ti...Based on time delay technology and MUSIC algorithm, a novel estimating multiple frequencies approach of signal with sampling rate which is least Nyquist sampling rate is presented in this paper. With choosing delay time properly, the estimated frequencies are unambiguous. Computer simulation confirms its availability.展开更多
传统的文本生成对抗方法主要采用位置置换、字符替换等方式,耗费时间较长且效果较差。针对以上问题,该文提出一种基于改进蚁群算法的对抗样本生成模型IGAS(Improved ant colony algorithm to Generate Adversarial Sample),利用蚁群算...传统的文本生成对抗方法主要采用位置置换、字符替换等方式,耗费时间较长且效果较差。针对以上问题,该文提出一种基于改进蚁群算法的对抗样本生成模型IGAS(Improved ant colony algorithm to Generate Adversarial Sample),利用蚁群算法的特点生成对抗样本,并利用类形字进行优化。首先,构建城市节点群,利用样本中的词构建城市节点群;然后对原始输入样本,利用改进的蚁群算法生成对抗样本;再针对生成结果,通过构建的中日类形字典进行字符替换,生成最终的对抗样本;最后在黑盒模式下进行对抗样本攻击实验。实验在情感分类、对话摘要生成、因果关系抽取等多种领域验证了该方法的有效性。展开更多
文摘In order to solve the problems of weak prediction stability and generalization ability of a neural network algorithm model in the yarn quality prediction research for small samples,a prediction model based on an AdaBoost algorithm(AdaBoost model) was established.A prediction model based on a linear regression algorithm(LR model) and a prediction model based on a multi-layer perceptron neural network algorithm(MLP model) were established for comparison.The prediction experiments of the yarn evenness and the yarn strength were implemented.Determination coefficients and prediction errors were used to evaluate the prediction accuracy of these models,and the K-fold cross validation was used to evaluate the generalization ability of these models.In the prediction experiments,the determination coefficient of the yarn evenness prediction result of the AdaBoost model is 76% and 87% higher than that of the LR model and the MLP model,respectively.The determination coefficient of the yarn strength prediction result of the AdaBoost model is slightly higher than that of the other two models.Considering that the yarn evenness dataset has a weaker linear relationship with the cotton dataset than that of the yarn strength dataset in this paper,the AdaBoost model has the best adaptability for the nonlinear dataset among the three models.In addition,the AdaBoost model shows generally better results in the cross-validation experiments and the series of prediction experiments at eight different training set sample sizes.It is proved that the AdaBoost model not only has good prediction accuracy but also has good prediction stability and generalization ability for small samples.
基金the National Natural Science Foundation of China(No.42127807)Natural Science Foundation of Sichuan Province(Nos.23NSFSCC0116 and 2022NSFSC12333)the Nuclear Energy Development Project(No.[2021]-88).
文摘In airborne gamma ray spectrum processing,different analysis methods,technical requirements,analysis models,and calculation methods need to be established.To meet the engineering practice requirements of airborne gamma-ray measurements and improve computational efficiency,an improved shuffled frog leaping algorithm-particle swarm optimization convolutional neural network(SFLA-PSO CNN)for large-sample quantitative analysis of airborne gamma-ray spectra is proposed herein.This method was used to train the weight of the neural network,optimize the structure of the network,delete redundant connections,and enable the neural network to acquire the capability of quantitative spectrum processing.In full-spectrum data processing,this method can perform the functions of energy spectrum peak searching and peak area calculations.After network training,the mean SNR and RMSE of the spectral lines were 31.27 and 2.75,respectively,satisfying the demand for noise reduction.To test the processing ability of the algorithm in large samples of airborne gamma spectra,this study considered the measured data from the Saihangaobi survey area as an example to conduct data spectral analysis.The results show that calculation of the single-peak area takes only 0.13~0.15 ms,and the average relative errors of the peak area in the U,Th,and K spectra are 3.11,9.50,and 6.18%,indicating the high processing efficiency and accuracy of this algorithm.The performance of the model can be further improved by optimizing related parameters,but it can already meet the requirements of practical engineering measurement.This study provides a new idea for the full-spectrum processing of airborne gamma rays.
基金Supported by the Open Researches Fund Program of L IESMARS(WKL(0 0 ) 0 30 2 )
文摘Clustering, in data mining, is a useful technique for discovering interesting data distributions and patterns in the underlying data, and has many application fields, such as statistical data analysis, pattern recognition, image processing, and etc. We combine sampling technique with DBSCAN algorithm to cluster large spatial databases, and two sampling based DBSCAN (SDBSCAN) algorithms are developed. One algorithm introduces sampling technique inside DBSCAN, and the other uses sampling procedure outside DBSCAN. Experimental results demonstrate that our algorithms are effective and efficient in clustering large scale spatial databases.
基金supported by the National Natural Science Foundation of China(61273070,61203092)the Enterprise-college-institute Cooperative Project of Jiangsu Province(BY2015019-21)+1 种基金111 Project(B12018)the Fun-damental Research Funds for the Central Universities(JUSRP51733B)
文摘For a class of non-uniform output sampling hybrid system with actuator faults and bounded disturbances,an iterative learning fault diagnosis algorithm is proposed.Firstly,in order to measure the impact of fault on system between every consecutive output sampling instants,the actual fault function is transformed to obtain an equivalent fault model by using the integral mean value theorem,then the non-uniform sampling hybrid system is converted to continuous systems with timevarying delay based on the output delay method.Afterwards,an observer-based fault diagnosis filter with virtual fault is designed to estimate the equivalent fault,and the iterative learning regulation algorithm is chosen to update the virtual fault repeatedly to make it approximate the actual equivalent fault after some iterative learning trials,so the algorithm can detect and estimate the system faults adaptively.Simulation results of an electro-mechanical control system model with different types of faults illustrate the feasibility and effectiveness of this algorithm.
基金Sponsored by the Fundamental Research Funds for the Central Universities(Grant No.CDJZR14130006)
文摘In order to prevent cracking appeared in the work-piece during the hot stamping operation,this paper proposes a hybrid optimization method based on Hammersley sequence sampling( HSS),finite analysis,backpropagation( BP) neural network and genetic algorithm( GA). The mechanical properties of high strength boron steel are characterized on the basis of uniaxial tensile test at elevated temperatures. The samples of process parameters are chosen via the HSS that encourages the exploration throughout the design space and hence achieves better discovery of possible global optimum in the solution space. Meanwhile, numerical simulation is carried out to predict the forming quality for the optimized design. A BP neural network model is developed to obtain the mathematical relationship between optimization goal and design variables,and genetic algorithm is used to optimize the process parameters. Finally,the results of numerical simulation are compared with those of production experiment to demonstrate that the optimization strategy proposed in the paper is feasible.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10674016,10875013the Specialized Research Foundation for the Doctoral Program of Higher Education under Grant No.20080027005
文摘We introduce the potential-decomposition strategy (PDS), which can be used in Markov chain Monte Carlo sampling algorithms. PDS can be designed to make particles move in a modified potential that favors diffusion in phase space, then, by rejecting some trial samples, the target distributions can be sampled in an unbiased manner. Furthermore, if the accepted trial samples are insumcient, they can be recycled as initial states to form more unbiased samples. This strategy can greatly improve efficiency when the original potential has multiple metastable states separated by large barriers. We apply PDS to the 2d Ising model and a double-well potential model with a large barrier, demonstrating in these two representative examples that convergence is accelerated by orders of magnitude.
文摘AIM To detect blood withdrawal for patients with arterial blood pressure monitoring to increase patient safety and provide better sample dating.METHODS Blood pressure information obtained from a patient monitor was fed as a real-time data stream to an experimental medical framework. This framework was connected to an analytical application which observes changes in systolic, diastolic and mean pressure to determine anomalies in the continuous data stream. Detection was based on an increased mean blood pressure caused by the closing of the withdrawal three-way tap and an absence of systolic and diastolic measurements during this manipulation. For evaluation of the proposed algorithm, measured data from animal studies in healthy pigs were used.RESULTS Using this novel approach for processing real-time measurement data of arterial pressure monitoring, the exact time of blood withdrawal could be successfully detected retrospectively and in real-time. The algorithm was able to detect 422 of 434(97%) blood withdrawals for blood gas analysis in the retrospective analysis of 7 study trials. Additionally, 64 sampling events for other procedures like laboratory and activated clotting time analyses were detected. The proposed algorithm achieved a sensitivity of 0.97, a precision of 0.96 and an F1 score of 0.97.CONCLUSION Arterial blood pressure monitoring data can be used toperform an accurate identification of individual blood samplings in order to reduce sample mix-ups and thereby increase patient safety.
基金supported by the National Natural Science Foundation of China under Grant Nos.62032009 and 62102440。
文摘Random sampling algorithm was proposed firstly by Schnorr in 2003 to find short lattice vectors,as an alternative to enumeration.The follow-up developments in random sampling were mainly proposed by Fukase and Kashiwabara in 2015 and Aono and Nguyen in 2017.Although they extended the sampling space compared to Schnorr's work through the natural number representation,they did not show how to sample specifically in practice and what vectors should be sampled,in order to find short enough lattice vectors.In this paper,the authors firstly introduce a practical random sampling algorithm under some reasonable assumptions which can find short enough lattice vectors efficiently.Then,as an application of this new random sampling algorithm,the authors show that it can improve the performance of progressive BKZ algorithm in practice.Finally,the authors solve the Darmstadt's Lattice Challenge and get a series of new records in the dimension from 500 to 825,using the improved progressive BKZ algorithm.
文摘In this paper,four pattern recognition methods are set forth.Based on plane projection of samples and analysis of typical samples along with the few pattern recognition methods,the PTR algorithm for recognizing various structure samples is proposed.Also two examples are given and these show the PTR algorithm is effective.
基金supported by the National Natural Science Foundation of China(62076225,62073300)the Natural Science Foundation for Distinguished Young Scholars of Hubei(2019CFA081)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(CUGGC03).
文摘Surrogate models have shown to be effective in assisting evolutionary algorithms(EAs)for solving computationally expensive complex optimization problems.However,the effectiveness of the existing surrogate-assisted evolutionary algorithms still needs to be improved.A data-driven evolutionary sampling optimization(DESO)framework is proposed,where at each generation it randomly employs one of two evolutionary sampling strategies,surrogate screening and surrogate local search based on historical data,to effectively balance global and local search.In DESO,the radial basis function(RBF)is used as the surrogate model in the sampling strategy,and different degrees of the evolutionary process are used to sample candidate points.The sampled points by sampling strategies are evaluated,and then added into the database for the updating surrogate model and population in the next sampling.To get the insight of DESO,extensive experiments and analysis of DESO have been performed.The proposed algorithm presents superior computational efficiency and robustness compared with five state-of-the-art algorithms on benchmark problems from 20 to 200 dimensions.Besides,DESO is applied to an airfoil design problem to show its effectiveness.
基金This work was supported by Major Science and Technology Program for Water Pollution Control and Treatment(No.2015ZX07406005)Also thanks to the National Natural Science Foundation of China(No.41430643 and No.51774270)the National Key Research&Development Plan(No.2016YFC0501109).
文摘Coupling Bayes’Theorem with a two-dimensional(2D)groundwater solute advection-diffusion transport equation allows an inverse model to be established to identify a set of contamination source parameters including source intensity(M),release location(0 X,0 Y)and release time(0 T),based on monitoring well data.To address the issues of insufficient monitoring wells or weak correlation between monitoring data and model parameters,a monitoring well design optimization approach was developed based on the Bayesian formula and information entropy.To demonstrate how the model works,an exemplar problem with an instantaneous release of a contaminant in a confined groundwater aquifer was employed.The information entropy of the model parameters posterior distribution was used as a criterion to evaluate the monitoring data quantity index.The optimal monitoring well position and monitoring frequency were solved by the two-step Monte Carlo method and differential evolution algorithm given a known well monitoring locations and monitoring events.Based on the optimized monitoring well position and sampling frequency,the contamination source was identified by an improved Metropolis algorithm using the Latin hypercube sampling approach.The case study results show that the following parameters were obtained:1)the optimal monitoring well position(D)is at(445,200);and 2)the optimal monitoring frequency(Δt)is 7,providing that the monitoring events is set as 5 times.Employing the optimized monitoring well position and frequency,the mean errors of inverse modeling results in source parameters(M,X0,Y0,T0)were 9.20%,0.25%,0.0061%,and 0.33%,respectively.The optimized monitoring well position and sampling frequency canIt was also learnt that the improved Metropolis-Hastings algorithm(a Markov chain Monte Carlo method)can make the inverse modeling result independent of the initial sampling points and achieves an overall optimization,which significantly improved the accuracy and numerical stability of the inverse modeling results.
文摘Based on time delay technology and MUSIC algorithm, a novel estimating multiple frequencies approach of signal with sampling rate which is least Nyquist sampling rate is presented in this paper. With choosing delay time properly, the estimated frequencies are unambiguous. Computer simulation confirms its availability.
文摘传统的文本生成对抗方法主要采用位置置换、字符替换等方式,耗费时间较长且效果较差。针对以上问题,该文提出一种基于改进蚁群算法的对抗样本生成模型IGAS(Improved ant colony algorithm to Generate Adversarial Sample),利用蚁群算法的特点生成对抗样本,并利用类形字进行优化。首先,构建城市节点群,利用样本中的词构建城市节点群;然后对原始输入样本,利用改进的蚁群算法生成对抗样本;再针对生成结果,通过构建的中日类形字典进行字符替换,生成最终的对抗样本;最后在黑盒模式下进行对抗样本攻击实验。实验在情感分类、对话摘要生成、因果关系抽取等多种领域验证了该方法的有效性。