While three-dimensional perovskites have high defect tolerance and an adjustable bandgap,their charges tend to be free rather than forming excitons,making them unsuitable for use in efficient light-emitting diodes(LED...While three-dimensional perovskites have high defect tolerance and an adjustable bandgap,their charges tend to be free rather than forming excitons,making them unsuitable for use in efficient light-emitting diodes(LEDs).Rather,quasi-two-dimensional(Q-2D)perovskites offer high photoluminescence quantum yield along with the advantages of bulk perovskites,making them ideal for high-performance LEDs.In Q-2D perovskites,the structure(which includes factors like crystal orientation,phase distribution,and layer thickness)directly influences how excitons and charge carriers behave within the material.Growth control techniques,such as varying the synthesis conditions or employing methods,allow for fine-tuning the structural characteristics of these materials,which in turn affect exciton dynamics and charge transport.This review starts with a description of the basic properties of Q-2D perovskites,examines crystal growth in solution,explains how structure affects energy transfer behavior,and concludes with future directions for Q-2D perovskite LEDs.By understanding and optimizing the structure-dependent behavior,researchers can better control exciton dynamics and charge transport,which are crucial for enhancing the performance of optoelectronic devices like solar cells and LEDs.展开更多
Using time-dependent terahertz spectroscopy, we investigate the role of mixed-cation and mixed-halide on the ultrafast photoconductivity dynamics of two different methylammonium(MA) lead-iodide perovskite thin films. ...Using time-dependent terahertz spectroscopy, we investigate the role of mixed-cation and mixed-halide on the ultrafast photoconductivity dynamics of two different methylammonium(MA) lead-iodide perovskite thin films. It is found that the dynamics of conductivity after photoexcitation reveals significant correlation on the microscopy crystalline features of the samples. Our results show that mixed-cation and lead mixed-halide affect the charge carrier dynamics of the lead-iodide perovskites. In the(5-AVA)_(0.05)(MA)_(0.95) PbI_(2.95) Cl_(0.05)/spiro thin film, we observe a much weaker saturation trend of the initial photoconductivity with high excitation fluence, which is attributed to the combined effect of sequential charge carrier generation, transfer, cooling and polaron formation.展开更多
In recent years,Perovskite Light-Emitting Diodes(PeLEDs)have received considerable attention in academia.However,with the development of PeLEDs,commercial applications of full-color PeLED technology are largely limite...In recent years,Perovskite Light-Emitting Diodes(PeLEDs)have received considerable attention in academia.However,with the development of PeLEDs,commercial applications of full-color PeLED technology are largely limited by the progress of blue-emitting devices,due to the uncontrollably accurate composition,unstable properties,and low luminance.In this article,we add Cesium chloride(CsCl)to the quasi-two-dimensional(quasi-2D)perovskite precursor solution and achieve the relatively blue shifts of PeLED emission peak by introducing chloride ions for photoluminescence(PL)and electroluminescence(EL).We also found that the introduction of chlorine ions can make quasi-2D perovskite films thinner with smoother surface of 0.408 nm.It is interesting that the EL peaks and intensities of PeLED are adjustable under different driving voltages in high concentration chlorine-added perovskite devices,and different processes of photo-excited,photo-quenched,and photo-excited occur sequentially with the increasing driving voltage.Our work provides a path for demonstrating full-color screens in the future.展开更多
Halide perovskites have been extensively studied for use as light-emitting diodes(LEDs)in next-generation displays due to their beneficial characteristics,including their high color purity and wide color gamut.Halide ...Halide perovskites have been extensively studied for use as light-emitting diodes(LEDs)in next-generation displays due to their beneficial characteristics,including their high color purity and wide color gamut.Halide perovskites can be categorized into four representative structures:three-dimensional(3D)bulk,two-dimensional(2D),quasi-two-dimensional(quasi-2D),and quantum dot(QD).Recently,excellent advances in the performance of perovskite LEDs(PeLEDs),especially those with quasi-2D and QD architectures,have been demonstrated with the incorporation of organic chain ligands.Ligands can both modify the structure of PeLEDs,such as forming multi-quantum wells in quasi-2D PeLEDs and essential passivation layers in QD PeLEDs,and also enhance their optical performance.The appropriate use of ligands in PeLEDs can thus lead to greater luminescence,current efficiency,power efficiency,and external quantum efficiency.In this review,the principal roles of ligands in quasi-2D and QD PeLEDs are systematically summarized.Furthermore,current limitations and future perspectives are discussed in detail.展开更多
文摘While three-dimensional perovskites have high defect tolerance and an adjustable bandgap,their charges tend to be free rather than forming excitons,making them unsuitable for use in efficient light-emitting diodes(LEDs).Rather,quasi-two-dimensional(Q-2D)perovskites offer high photoluminescence quantum yield along with the advantages of bulk perovskites,making them ideal for high-performance LEDs.In Q-2D perovskites,the structure(which includes factors like crystal orientation,phase distribution,and layer thickness)directly influences how excitons and charge carriers behave within the material.Growth control techniques,such as varying the synthesis conditions or employing methods,allow for fine-tuning the structural characteristics of these materials,which in turn affect exciton dynamics and charge transport.This review starts with a description of the basic properties of Q-2D perovskites,examines crystal growth in solution,explains how structure affects energy transfer behavior,and concludes with future directions for Q-2D perovskite LEDs.By understanding and optimizing the structure-dependent behavior,researchers can better control exciton dynamics and charge transport,which are crucial for enhancing the performance of optoelectronic devices like solar cells and LEDs.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11604202,11674213,61735010 and 51603119the Young Eastern Scholar under Grant Nos QD2015020 and QD2016027+3 种基金the Shanghai Rising-Star Program under Grant No18QA1401700the ‘Chen Guang’ Project under Grant Nos 16CG45 and 16CG46the Shanghai Municipal Education Commissionthe Shanghai Education Development Foundation
文摘Using time-dependent terahertz spectroscopy, we investigate the role of mixed-cation and mixed-halide on the ultrafast photoconductivity dynamics of two different methylammonium(MA) lead-iodide perovskite thin films. It is found that the dynamics of conductivity after photoexcitation reveals significant correlation on the microscopy crystalline features of the samples. Our results show that mixed-cation and lead mixed-halide affect the charge carrier dynamics of the lead-iodide perovskites. In the(5-AVA)_(0.05)(MA)_(0.95) PbI_(2.95) Cl_(0.05)/spiro thin film, we observe a much weaker saturation trend of the initial photoconductivity with high excitation fluence, which is attributed to the combined effect of sequential charge carrier generation, transfer, cooling and polaron formation.
基金supported by the National Key Research and Development Program of China(No.2018YFB2200103)the National Natural Science Foundation of China(Nos.61875186 and 61975196)+2 种基金the Project of the Natural Science Foundation of Beijing(No.Z160002)the Key Research Projects of Beijing Information Science and Technology University(BISTU)(Nos.2019-22,2019-23,2019-27)the Beijing Key Laboratory for Sensors of BISTU(No.2019CGKF007)。
文摘In recent years,Perovskite Light-Emitting Diodes(PeLEDs)have received considerable attention in academia.However,with the development of PeLEDs,commercial applications of full-color PeLED technology are largely limited by the progress of blue-emitting devices,due to the uncontrollably accurate composition,unstable properties,and low luminance.In this article,we add Cesium chloride(CsCl)to the quasi-two-dimensional(quasi-2D)perovskite precursor solution and achieve the relatively blue shifts of PeLED emission peak by introducing chloride ions for photoluminescence(PL)and electroluminescence(EL).We also found that the introduction of chlorine ions can make quasi-2D perovskite films thinner with smoother surface of 0.408 nm.It is interesting that the EL peaks and intensities of PeLED are adjustable under different driving voltages in high concentration chlorine-added perovskite devices,and different processes of photo-excited,photo-quenched,and photo-excited occur sequentially with the increasing driving voltage.Our work provides a path for demonstrating full-color screens in the future.
基金supported by a National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(NRF-2021R1A2C4002045 and 2021R1A4A2001687).
文摘Halide perovskites have been extensively studied for use as light-emitting diodes(LEDs)in next-generation displays due to their beneficial characteristics,including their high color purity and wide color gamut.Halide perovskites can be categorized into four representative structures:three-dimensional(3D)bulk,two-dimensional(2D),quasi-two-dimensional(quasi-2D),and quantum dot(QD).Recently,excellent advances in the performance of perovskite LEDs(PeLEDs),especially those with quasi-2D and QD architectures,have been demonstrated with the incorporation of organic chain ligands.Ligands can both modify the structure of PeLEDs,such as forming multi-quantum wells in quasi-2D PeLEDs and essential passivation layers in QD PeLEDs,and also enhance their optical performance.The appropriate use of ligands in PeLEDs can thus lead to greater luminescence,current efficiency,power efficiency,and external quantum efficiency.In this review,the principal roles of ligands in quasi-2D and QD PeLEDs are systematically summarized.Furthermore,current limitations and future perspectives are discussed in detail.