This paper describes a new method for simulation of the cross section shape of log. The self-developed MQK3102 log shape recognizing machine was used to acquire the finite discrete sampling points on the cross section...This paper describes a new method for simulation of the cross section shape of log. The self-developed MQK3102 log shape recognizing machine was used to acquire the finite discrete sampling points on the cross section of log and those points were fitted with the quadratic B-spline parametric curve. This method can clearly stimulate the real shape of the log cross section and is characterized by limited sampling points and high speed computing. The computed result of the previous curve does not affect the next one, which may avoid the graphic distortion caused by the accumulative error. The method can be used to simulate the whole body shape of log approximately by sampling the cross sections along the length direction of log, thus providing a reference model for optimum saw cutting of log.展开更多
In this paper,we propose an efficient method to construct energy-minimizing B-spline curves by using discrete mask method.The linear relations between control points are firstly derived for different energy-minimizati...In this paper,we propose an efficient method to construct energy-minimizing B-spline curves by using discrete mask method.The linear relations between control points are firstly derived for different energy-minimization problems,then the construction of B-spline curve with minimal internal energy can be addressed by solving a sparse linear system.The existence and uniqueness of the solution for the linear system are also proved.Experimental results show the efficiency of the proposed approach,and its application in 1 G blending curve construction is also presented.展开更多
Parametric curves such as Bézier and B-splines, originally developedfor the design of automobile bodies, are now also used in image processing andcomputer vision. For example, reconstructing an object shape in an...Parametric curves such as Bézier and B-splines, originally developedfor the design of automobile bodies, are now also used in image processing andcomputer vision. For example, reconstructing an object shape in an image,including different translations, scales, and orientations, can be performedusing these parametric curves. For this, Bézier and B-spline curves can be generatedusing a point set that belongs to the outer boundary of the object. Theresulting object shape can be used in computer vision fields, such as searchingand segmentation methods and training machine learning algorithms. Theprerequisite for reconstructing the shape with parametric curves is to obtainsequentially the points in the point set. In this study, a novel algorithm hasbeen developed that sequentially obtains the pixel locations constituting theouter boundary of the object. The proposed algorithm, unlike the methods inthe literature, is implemented using a filter containing weights and an outercircle surrounding the object. In a binary format image, the starting point ofthe tracing is determined using the outer circle, and the next tracing movementand the pixel to be labeled as the boundary point is found by the filter weights.Then, control points that define the curve shape are selected by reducing thenumber of sequential points. Thus, the Bézier and B-spline curve equationsdescribing the shape are obtained using these points. In addition, differenttranslations, scales, and rotations of the object shape are easily provided bychanging the positions of the control points. It has also been shown that themissing part of the object can be completed thanks to the parametric curves.展开更多
Applying the distance function between two B-spline curves with respect to the L2 norm as the approximate error, we investigate the problem of approximate merging of two adjacent B-spline curves into one B-spline curv...Applying the distance function between two B-spline curves with respect to the L2 norm as the approximate error, we investigate the problem of approximate merging of two adjacent B-spline curves into one B-spline curve. Then this method can be easily extended to the approximate merging problem of multiple B-spline curves and of two adjacent surfaces. After minimizing the approximate error between curves or surfaces, the approximate merging problem can be transformed into equations solving. We express both the new control points and the precise error of approximation explicitly in matrix form. Based on homogeneous coordinates and quadratic programming, we also introduce a new framework for approximate merging of two adjacent NURBS curves. Finally, several numerical examples demonstrate the effectiveness and validity of the algorithm.展开更多
A new method to the problem of fairing planar cubic B-spline curves is introduced in this paper. The method is based on weighted progressive iterative approximation (WPIA for short) and consists of following steps:...A new method to the problem of fairing planar cubic B-spline curves is introduced in this paper. The method is based on weighted progressive iterative approximation (WPIA for short) and consists of following steps: finding the bad point which needs to fair, deleting the bad point, re-inserting a new data point to keep the structm-e of the curve and applying WPIA method with the new set of the data points to obtain the faired curve. The new set of the data points is formed by the rest of the original data points and the new inserted point. The method can be used for shape design and data processing. Numerical examples are provided to demonstrate the effectiveness of the method.展开更多
Routing algorithms capable of providing quality of service (QoS) will play an important role in future communication networks. For the trajectory-based routing ( TBR), An effective method of en- coding trajectorie...Routing algorithms capable of providing quality of service (QoS) will play an important role in future communication networks. For the trajectory-based routing ( TBR), An effective method of en- coding trajectories into packets is proposed. The method uses a B-spline curve, which provides a lot of flexibility. The simulation results show that the performance of the proposed algorithms is im- proved significantly compared with the existing algorithm.展开更多
A method to reconstruct symmetric B-spline curves and surfaces is presented. The symmetry property is realized by using symmetric knot vector and symmetric control points. Firstly, data points are divided into two par...A method to reconstruct symmetric B-spline curves and surfaces is presented. The symmetry property is realized by using symmetric knot vector and symmetric control points. Firstly, data points are divided into two parts based on the symmetry axis or symmetry plane extracted from data points. Then the divided data points are parameterized and a symmetric knot vector is selected in order to get symmetric B-spline basis functions. Constraint equations regarding the control points are deduced to keep the control points of the B-spline curve or surface to be symmetric with respect to the extracted symmetry axis or symmetry plane. Lastly, the constrained least squares fitting problem is solved with the Lagrange multiplier method. Two examples from industry are given to show that the proposed method is efficient, robust and able to meet the general engineering requirements.展开更多
Abstract For two rational quadratic B spline curves with same control vertexes, the cross ratio of four collinear points are represented: which are any one of the vertexes, and the two points that the ray initialing f...Abstract For two rational quadratic B spline curves with same control vertexes, the cross ratio of four collinear points are represented: which are any one of the vertexes, and the two points that the ray initialing from the vertex intersects with the corresponding segments of the two curves, and the point the ray intersecting with the connecting line between the two neighboring vertexes. Different from rational quadratic Bézier curves, the value is generally related with the location of the ray, and the necessary and sufficient condition of the ratio being independent of the ray's location is showed. Also another cross ratio of the following four collinear points are suggested, i.e. one vertex, the points that the ray from the initial vertex intersects respectively with the curve segment, the line connecting the segments end points, and the line connecting the two neighboring vertexes. This cross ratio is concerned only with the ray's location, but not with the weights of the curve. Furthermore, the cross ratio is projective invariant under the projective transformation between the two segments.展开更多
To realize the high precision and real-time interpolation of the NURBS (non-uniform rational B-spline) curve, a kinetic model based on the modified sigmoid function is proposed. The constraints of maximum feed rate,...To realize the high precision and real-time interpolation of the NURBS (non-uniform rational B-spline) curve, a kinetic model based on the modified sigmoid function is proposed. The constraints of maximum feed rate, chord error, curvature radius and interpolator cycle are discussed. This kinetic model reduces the cubic polynomial S-shape model and the trigonometry function S-shape model from 15 sections into 3 sections under the precondition of jerk, acceleration and feedrate continuity. Then an optimized Adams algorithm using the difference quotient to replace the derivative is presented to calculate the interpolator cycle parameters. The higher-order derivation in the Taylor expansion algorithm can be avoided by this algorithm. Finally, the simplified design is analyzed by reducing the times of computing the low-degree zero-value B-spline basis function and the simplified De Boor-Cox recursive algorithm is proposed. The simulation analysis indicates that by these algorithms, the feed rate is effectively controlled according to tool path. The calculated amount is decreased and the calculated speed is increased while the machining precision is ensured. The experimental results show that the target parameter can be correctly calculated and these algorithms can be applied to actual systems.展开更多
The principle of real-time look-ahead was introduced and analysed. An adaptive parametric curve interpolator with a real-time look-ahead function was developed for non-uniform rational B-spline (NURBS) curves interpol...The principle of real-time look-ahead was introduced and analysed. An adaptive parametric curve interpolator with a real-time look-ahead function was developed for non-uniform rational B-spline (NURBS) curves interpolation, which considering the maximum acceleration/deceleration of the machine tool. In order to deal with the acceleration/deceleration around the feedrate sensitive corners, the look-ahead function was designed and illustrated. It can detect and adjust the feedrate adaptively. With the help of real-time look-ahead, the acceleration/deceleration can be limited to the range of the machine tool capacity. Thus, feedrate fluctuation is reduced. A NURBS curve interpolation experiment was provided to verify the feasibility and advantages of the proposed interpolator with a real-time look-ahead function.展开更多
An adaptive B-spline active contour model for planar curve approximation is proposed. Starting with an initial B-spline curve, the finite element method is adopted to make the active B-spline curve converge towards th...An adaptive B-spline active contour model for planar curve approximation is proposed. Starting with an initial B-spline curve, the finite element method is adopted to make the active B-spline curve converge towards the target curve without the need of data points parameterization. A strategy of automatic control point insertion during the B-spline active contour deformation, adaptive to the shape of the planar curve, is also given. Experimental results show that this method is efficient and accurate in planar curve approximation.展开更多
Geometric parameters of the turbine blade are classified according to their destined functions, and the mathematical definition of those parameters in the section curve is introduced in detail. Some parts of the secti...Geometric parameters of the turbine blade are classified according to their destined functions, and the mathematical definition of those parameters in the section curve is introduced in detail. Some parts of the section curve shape can be adjusted freely, offering more flexibility to designers.展开更多
Multiresolution modeling is becoming a powerful tool for fast display, and geometric data compression and transmission of complex shapes. Most of the existing literatures investigating the multiresolution for B-spline...Multiresolution modeling is becoming a powerful tool for fast display, and geometric data compression and transmission of complex shapes. Most of the existing literatures investigating the multiresolution for B-spline curves and surfaces are concentrated on open ones. In this paper, we focus on the multiresolution representations and editing of closed B-spline curves and surfaces using wavelets. A repetition approach is adopted for the multiresolution analysis of closed B-spline curves and surfaces. Since the closed curve or surface itself is periodic, it can overcome the drawback brought by the repetition method, i.e. introducing the discontinuities at the boundaries. Based on the models at different multiresolution levels, the multiresolution editing methods of closed curves and surfaces are introduced. Users can edit the overall shape of a closed one while preserving its details, or change its details without affecting its overall shape.展开更多
The problem of ship hull plate processing surface fairing with constraints based on B-spline is solved in this paper. The algorithm for B-spline curve fairing with constraints is one of the most common methods in plan...The problem of ship hull plate processing surface fairing with constraints based on B-spline is solved in this paper. The algorithm for B-spline curve fairing with constraints is one of the most common methods in plane curve fairing. The algorithm can be applied to global and local curve fairing. It can constrain the perturbation range of the control points and the shape variation of the curve, and get a better fairing result in plane curves. In this paper, a new fairing algorithm with constraints for curves and surfaces in space is presented. Then this method is applied to the experiments of ship hull plate processing surface. Finally numerical results are obtained to show the efficiency of this method.展开更多
In this paper, we present two new unified mathematics models of conics and polynomial curves, called algebraic hyperbolic trigonometric ( AHT) Bezier curves and non-uniform algebraic hyperbolic trigonometric ( NUAH...In this paper, we present two new unified mathematics models of conics and polynomial curves, called algebraic hyperbolic trigonometric ( AHT) Bezier curves and non-uniform algebraic hyperbolic trigonometric ( NUAHT) B-spline curves of order n, which are generated over the space span{sin t, cos t, sinh t, cosh t, 1, t,..., t^n-5}, n 7〉 5. The two kinds of curves share most of the properties as those of the Bezier curves and B-spline curves in polynomial space. In particular, they can represent exactly some remarkable transcendental curves such as the helix, the cycloid and the catenary. The subdivision formulae of these new kinds of curves are also given. The generations of the tensor product surfaces are straightforward. Using the new mathematics models, we present the control mesh representations of two classes of minimal surfaces.展开更多
In this paper, based on the idea of profit and loss modification, we presentthe iterative non-uniform B-spline curve and surface to settle a key problem in computeraided geometric design and reverse engineering, that ...In this paper, based on the idea of profit and loss modification, we presentthe iterative non-uniform B-spline curve and surface to settle a key problem in computeraided geometric design and reverse engineering, that is, constructing the curve (surface)fitting (interpolating) a given ordered point set without solving a linear system. We startwith a piece of initial non-uniform B-spline curve (surface) which takes the given point setas its control point set. Then by adjusting its control points gradually with iterative formula,we can get a group of non-uniform B-spline curves (surfaces) with gradually higherprecision. In this paper, using modern matrix theory, we strictly prove that the limit curve(surface) of the iteration interpolates the given point set. The non-uniform B-spline curves(surfaces) generated with the iteration have many advantages, such as satisfying theNURBS standard, having explicit expression, gaining locality, and convexity preserving,etc展开更多
We propose a method that automatically generates discrete bicubic G^1 continuous B-spline surfaces that interpolate the curve network of a ship huliform.First,the curves in the network are classified into two types;bo...We propose a method that automatically generates discrete bicubic G^1 continuous B-spline surfaces that interpolate the curve network of a ship huliform.First,the curves in the network are classified into two types;boundary curves and "reference curves",The boundary curves correspond to a set of rectangular(or triangular)topological type that can be representes with tensot-product (or degenerate)B-spline surface patches.Next,in the interior of the patches,surface fitting points and cross boundary derivatives are estimated from the reference curves by constructing "virtual"isoparametric curves.Finally,a discrete G^1 continuous B-spline surface is gencrated by a surface fitting algorithm.Several smooth ship hullform surfaces generated from curve networks corresponding to actual ship hullforms demonstrate the quality of the method.展开更多
A new identity is proved that represents the kth order B-splines as linear combinations of the (k + 1) th order B-splines A new method for degree-raising of B-spline curves is presented based on the identity. The new ...A new identity is proved that represents the kth order B-splines as linear combinations of the (k + 1) th order B-splines A new method for degree-raising of B-spline curves is presented based on the identity. The new method can be used for all kinds of B-spline curves, that is, both uniform and arbitrarily nonuniform B-spline curves. When used for degree-raising of a segment of a uniform B-spline curve of degree k - 1, it can help obtain a segment of curve of degree k that is still a uniform B-spline curve without raising the multiplicity of any knot. The method for degree-raising of Bezier curves can be regarded as the special case of the new method presented. Moreover, the conventional theory for degree-raising, whose shortcoming has been found, is discussed.展开更多
As a major food production crop in China,the growth and development of rice is an extremely complex systemic process,and the root system is the main organ for rice to obtain nutrients.Therefore,3D modeling and visuali...As a major food production crop in China,the growth and development of rice is an extremely complex systemic process,and the root system is the main organ for rice to obtain nutrients.Therefore,3D modeling and visualization of the rice root system can help to further understand its morphology,structure and function,and provide an aid for scientific cultivation of rice and improving rice yield for decision making.In this paper,a mathematical model of the rice root system is established based on the B spline curve combined with the L-system approach,using mathematical knowledge based on the 3D morphological characteristics of the real rice root system.The B-Spline Curve is chosen to simulate this,and the recursive definition of B-Spline Curve and its formula are used to realize the modeling of the rice root system curve.Based on the mathematical method of rice root system integration,the bending effect of rice root system at different periods and different growth positions is realized.Finally,the L-system combined with B-Spline Curve is used to construct a rice root system model and realize the rice root system visualization simulation.The simulated image is closer to the real rice root system image in terms of morphological structure and has a strong sense of realism.展开更多
In this paper,we consider the knot placement problem in B-spline curve approximation.A novel two-stage framework is proposed for addressing this problem.In the first step,the l_(∞,1)-norm model is introduced for the ...In this paper,we consider the knot placement problem in B-spline curve approximation.A novel two-stage framework is proposed for addressing this problem.In the first step,the l_(∞,1)-norm model is introduced for the sparse selection of candidate knots from an initial knot vector.By this step,the knot number is determined.In the second step,knot positions are formulated into a nonlinear optimization problem and optimized by a global optimization algorithm—the differential evolution algorithm(DE).The candidate knots selected in the first step are served for initial values of the DE algorithm.Since the candidate knots provide a good guess of knot positions,the DE algorithm can quickly converge.One advantage of the proposed algorithm is that the knot number and knot positions are determined automatically.Compared with the current existing algorithms,the proposed algorithm finds approximations with smaller fitting error when the knot number is fixed in advance.Furthermore,the proposed algorithm is robust to noisy data and can handle with few data points.We illustrate with some examples and applications.展开更多
基金The research is supported by Project of National Natural Science Foundation of China(30571455)and National "948" Project(2005-4-62)
文摘This paper describes a new method for simulation of the cross section shape of log. The self-developed MQK3102 log shape recognizing machine was used to acquire the finite discrete sampling points on the cross section of log and those points were fitted with the quadratic B-spline parametric curve. This method can clearly stimulate the real shape of the log cross section and is characterized by limited sampling points and high speed computing. The computed result of the previous curve does not affect the next one, which may avoid the graphic distortion caused by the accumulative error. The method can be used to simulate the whole body shape of log approximately by sampling the cross sections along the length direction of log, thus providing a reference model for optimum saw cutting of log.
基金Thanks for the reviewers’comments to improve the paper.This research was supported by the National Nature Science Foundation of China under Grant Nos.61772163,61761136010,61472111,Zhejiang Provincial Natural Science Foundation of China under Grant Nos.LR16F020003,LQ16F020005.
文摘In this paper,we propose an efficient method to construct energy-minimizing B-spline curves by using discrete mask method.The linear relations between control points are firstly derived for different energy-minimization problems,then the construction of B-spline curve with minimal internal energy can be addressed by solving a sparse linear system.The existence and uniqueness of the solution for the linear system are also proved.Experimental results show the efficiency of the proposed approach,and its application in 1 G blending curve construction is also presented.
文摘Parametric curves such as Bézier and B-splines, originally developedfor the design of automobile bodies, are now also used in image processing andcomputer vision. For example, reconstructing an object shape in an image,including different translations, scales, and orientations, can be performedusing these parametric curves. For this, Bézier and B-spline curves can be generatedusing a point set that belongs to the outer boundary of the object. Theresulting object shape can be used in computer vision fields, such as searchingand segmentation methods and training machine learning algorithms. Theprerequisite for reconstructing the shape with parametric curves is to obtainsequentially the points in the point set. In this study, a novel algorithm hasbeen developed that sequentially obtains the pixel locations constituting theouter boundary of the object. The proposed algorithm, unlike the methods inthe literature, is implemented using a filter containing weights and an outercircle surrounding the object. In a binary format image, the starting point ofthe tracing is determined using the outer circle, and the next tracing movementand the pixel to be labeled as the boundary point is found by the filter weights.Then, control points that define the curve shape are selected by reducing thenumber of sequential points. Thus, the Bézier and B-spline curve equationsdescribing the shape are obtained using these points. In addition, differenttranslations, scales, and rotations of the object shape are easily provided bychanging the positions of the control points. It has also been shown that themissing part of the object can be completed thanks to the parametric curves.
基金Supported by the National Natural Science Foundation of China (60873111, 60933007)
文摘Applying the distance function between two B-spline curves with respect to the L2 norm as the approximate error, we investigate the problem of approximate merging of two adjacent B-spline curves into one B-spline curve. Then this method can be easily extended to the approximate merging problem of multiple B-spline curves and of two adjacent surfaces. After minimizing the approximate error between curves or surfaces, the approximate merging problem can be transformed into equations solving. We express both the new control points and the precise error of approximation explicitly in matrix form. Based on homogeneous coordinates and quadratic programming, we also introduce a new framework for approximate merging of two adjacent NURBS curves. Finally, several numerical examples demonstrate the effectiveness and validity of the algorithm.
基金Supported by National Natural Science Foundation of China(No.U1135003 and No.61100126)Ph.D.Programs Foundation of Ministry of Education of China for Young Scholars(No.20100111120023,No.20110111120026)Anhui Provincial Natural Science Foundation(No.11040606Q42)
文摘A new method to the problem of fairing planar cubic B-spline curves is introduced in this paper. The method is based on weighted progressive iterative approximation (WPIA for short) and consists of following steps: finding the bad point which needs to fair, deleting the bad point, re-inserting a new data point to keep the structm-e of the curve and applying WPIA method with the new set of the data points to obtain the faired curve. The new set of the data points is formed by the rest of the original data points and the new inserted point. The method can be used for shape design and data processing. Numerical examples are provided to demonstrate the effectiveness of the method.
基金Supported by the National Natural Science Foundation of China (11171316), and the Zhejiang Provincial Natural Science Foundation of China (No. Y6090472).
文摘Routing algorithms capable of providing quality of service (QoS) will play an important role in future communication networks. For the trajectory-based routing ( TBR), An effective method of en- coding trajectories into packets is proposed. The method uses a B-spline curve, which provides a lot of flexibility. The simulation results show that the performance of the proposed algorithms is im- proved significantly compared with the existing algorithm.
基金This project is supported by National Natural Science Foundation of China(No.50575098).
文摘A method to reconstruct symmetric B-spline curves and surfaces is presented. The symmetry property is realized by using symmetric knot vector and symmetric control points. Firstly, data points are divided into two parts based on the symmetry axis or symmetry plane extracted from data points. Then the divided data points are parameterized and a symmetric knot vector is selected in order to get symmetric B-spline basis functions. Constraint equations regarding the control points are deduced to keep the control points of the B-spline curve or surface to be symmetric with respect to the extracted symmetry axis or symmetry plane. Lastly, the constrained least squares fitting problem is solved with the Lagrange multiplier method. Two examples from industry are given to show that the proposed method is efficient, robust and able to meet the general engineering requirements.
文摘Abstract For two rational quadratic B spline curves with same control vertexes, the cross ratio of four collinear points are represented: which are any one of the vertexes, and the two points that the ray initialing from the vertex intersects with the corresponding segments of the two curves, and the point the ray intersecting with the connecting line between the two neighboring vertexes. Different from rational quadratic Bézier curves, the value is generally related with the location of the ray, and the necessary and sufficient condition of the ratio being independent of the ray's location is showed. Also another cross ratio of the following four collinear points are suggested, i.e. one vertex, the points that the ray from the initial vertex intersects respectively with the curve segment, the line connecting the segments end points, and the line connecting the two neighboring vertexes. This cross ratio is concerned only with the ray's location, but not with the weights of the curve. Furthermore, the cross ratio is projective invariant under the projective transformation between the two segments.
基金The Doctoral Fund of Ministry of Education of China(No.20090092110052)the Natural Science Foundation of Higher Education Institutions of Jiangsu Province(No.12KJA460002)College Industrialization Project of Jiangsu Province(No.JHB2012-21)
文摘To realize the high precision and real-time interpolation of the NURBS (non-uniform rational B-spline) curve, a kinetic model based on the modified sigmoid function is proposed. The constraints of maximum feed rate, chord error, curvature radius and interpolator cycle are discussed. This kinetic model reduces the cubic polynomial S-shape model and the trigonometry function S-shape model from 15 sections into 3 sections under the precondition of jerk, acceleration and feedrate continuity. Then an optimized Adams algorithm using the difference quotient to replace the derivative is presented to calculate the interpolator cycle parameters. The higher-order derivation in the Taylor expansion algorithm can be avoided by this algorithm. Finally, the simplified design is analyzed by reducing the times of computing the low-degree zero-value B-spline basis function and the simplified De Boor-Cox recursive algorithm is proposed. The simulation analysis indicates that by these algorithms, the feed rate is effectively controlled according to tool path. The calculated amount is decreased and the calculated speed is increased while the machining precision is ensured. The experimental results show that the target parameter can be correctly calculated and these algorithms can be applied to actual systems.
文摘The principle of real-time look-ahead was introduced and analysed. An adaptive parametric curve interpolator with a real-time look-ahead function was developed for non-uniform rational B-spline (NURBS) curves interpolation, which considering the maximum acceleration/deceleration of the machine tool. In order to deal with the acceleration/deceleration around the feedrate sensitive corners, the look-ahead function was designed and illustrated. It can detect and adjust the feedrate adaptively. With the help of real-time look-ahead, the acceleration/deceleration can be limited to the range of the machine tool capacity. Thus, feedrate fluctuation is reduced. A NURBS curve interpolation experiment was provided to verify the feasibility and advantages of the proposed interpolator with a real-time look-ahead function.
基金Funded by the Natural Science Foundation of Guangdong Province (No. 04105386,5300090).
文摘An adaptive B-spline active contour model for planar curve approximation is proposed. Starting with an initial B-spline curve, the finite element method is adopted to make the active B-spline curve converge towards the target curve without the need of data points parameterization. A strategy of automatic control point insertion during the B-spline active contour deformation, adaptive to the shape of the planar curve, is also given. Experimental results show that this method is efficient and accurate in planar curve approximation.
文摘Geometric parameters of the turbine blade are classified according to their destined functions, and the mathematical definition of those parameters in the section curve is introduced in detail. Some parts of the section curve shape can be adjusted freely, offering more flexibility to designers.
文摘Multiresolution modeling is becoming a powerful tool for fast display, and geometric data compression and transmission of complex shapes. Most of the existing literatures investigating the multiresolution for B-spline curves and surfaces are concentrated on open ones. In this paper, we focus on the multiresolution representations and editing of closed B-spline curves and surfaces using wavelets. A repetition approach is adopted for the multiresolution analysis of closed B-spline curves and surfaces. Since the closed curve or surface itself is periodic, it can overcome the drawback brought by the repetition method, i.e. introducing the discontinuities at the boundaries. Based on the models at different multiresolution levels, the multiresolution editing methods of closed curves and surfaces are introduced. Users can edit the overall shape of a closed one while preserving its details, or change its details without affecting its overall shape.
基金Supported by Hi -tech Research and Development Program of China(No. 2001AA421200).
文摘The problem of ship hull plate processing surface fairing with constraints based on B-spline is solved in this paper. The algorithm for B-spline curve fairing with constraints is one of the most common methods in plane curve fairing. The algorithm can be applied to global and local curve fairing. It can constrain the perturbation range of the control points and the shape variation of the curve, and get a better fairing result in plane curves. In this paper, a new fairing algorithm with constraints for curves and surfaces in space is presented. Then this method is applied to the experiments of ship hull plate processing surface. Finally numerical results are obtained to show the efficiency of this method.
基金This work is supported by the National Natural Science Foundation of China under Grant Nos.60473130,10371110the National Grand Fundamental Research 973 Program of China under Grant No.2004CB318000.
文摘In this paper, we present two new unified mathematics models of conics and polynomial curves, called algebraic hyperbolic trigonometric ( AHT) Bezier curves and non-uniform algebraic hyperbolic trigonometric ( NUAHT) B-spline curves of order n, which are generated over the space span{sin t, cos t, sinh t, cosh t, 1, t,..., t^n-5}, n 7〉 5. The two kinds of curves share most of the properties as those of the Bezier curves and B-spline curves in polynomial space. In particular, they can represent exactly some remarkable transcendental curves such as the helix, the cycloid and the catenary. The subdivision formulae of these new kinds of curves are also given. The generations of the tensor product surfaces are straightforward. Using the new mathematics models, we present the control mesh representations of two classes of minimal surfaces.
文摘In this paper, based on the idea of profit and loss modification, we presentthe iterative non-uniform B-spline curve and surface to settle a key problem in computeraided geometric design and reverse engineering, that is, constructing the curve (surface)fitting (interpolating) a given ordered point set without solving a linear system. We startwith a piece of initial non-uniform B-spline curve (surface) which takes the given point setas its control point set. Then by adjusting its control points gradually with iterative formula,we can get a group of non-uniform B-spline curves (surfaces) with gradually higherprecision. In this paper, using modern matrix theory, we strictly prove that the limit curve(surface) of the iteration interpolates the given point set. The non-uniform B-spline curves(surfaces) generated with the iteration have many advantages, such as satisfying theNURBS standard, having explicit expression, gaining locality, and convexity preserving,etc
文摘We propose a method that automatically generates discrete bicubic G^1 continuous B-spline surfaces that interpolate the curve network of a ship huliform.First,the curves in the network are classified into two types;boundary curves and "reference curves",The boundary curves correspond to a set of rectangular(or triangular)topological type that can be representes with tensot-product (or degenerate)B-spline surface patches.Next,in the interior of the patches,surface fitting points and cross boundary derivatives are estimated from the reference curves by constructing "virtual"isoparametric curves.Finally,a discrete G^1 continuous B-spline surface is gencrated by a surface fitting algorithm.Several smooth ship hullform surfaces generated from curve networks corresponding to actual ship hullforms demonstrate the quality of the method.
基金Project supported by the National Natural Science Foundation of China.
文摘A new identity is proved that represents the kth order B-splines as linear combinations of the (k + 1) th order B-splines A new method for degree-raising of B-spline curves is presented based on the identity. The new method can be used for all kinds of B-spline curves, that is, both uniform and arbitrarily nonuniform B-spline curves. When used for degree-raising of a segment of a uniform B-spline curve of degree k - 1, it can help obtain a segment of curve of degree k that is still a uniform B-spline curve without raising the multiplicity of any knot. The method for degree-raising of Bezier curves can be regarded as the special case of the new method presented. Moreover, the conventional theory for degree-raising, whose shortcoming has been found, is discussed.
基金Supported by the National Natural Science Foundation of China(61862032)the Project of Natural Science Foundation of Jiangxi Province(20202BABL202034)the Special Foundation of Graduate Student Innovation of Jiangxi Province(YC2021-S347)
文摘As a major food production crop in China,the growth and development of rice is an extremely complex systemic process,and the root system is the main organ for rice to obtain nutrients.Therefore,3D modeling and visualization of the rice root system can help to further understand its morphology,structure and function,and provide an aid for scientific cultivation of rice and improving rice yield for decision making.In this paper,a mathematical model of the rice root system is established based on the B spline curve combined with the L-system approach,using mathematical knowledge based on the 3D morphological characteristics of the real rice root system.The B-Spline Curve is chosen to simulate this,and the recursive definition of B-Spline Curve and its formula are used to realize the modeling of the rice root system curve.Based on the mathematical method of rice root system integration,the bending effect of rice root system at different periods and different growth positions is realized.Finally,the L-system combined with B-Spline Curve is used to construct a rice root system model and realize the rice root system visualization simulation.The simulated image is closer to the real rice root system image in terms of morphological structure and has a strong sense of realism.
基金supported by the National Natural Science Foundation of China(Nos.11871447,11801393)the Natural Science Foundation of Jiangsu Province(No.BK20180831).
文摘In this paper,we consider the knot placement problem in B-spline curve approximation.A novel two-stage framework is proposed for addressing this problem.In the first step,the l_(∞,1)-norm model is introduced for the sparse selection of candidate knots from an initial knot vector.By this step,the knot number is determined.In the second step,knot positions are formulated into a nonlinear optimization problem and optimized by a global optimization algorithm—the differential evolution algorithm(DE).The candidate knots selected in the first step are served for initial values of the DE algorithm.Since the candidate knots provide a good guess of knot positions,the DE algorithm can quickly converge.One advantage of the proposed algorithm is that the knot number and knot positions are determined automatically.Compared with the current existing algorithms,the proposed algorithm finds approximations with smaller fitting error when the knot number is fixed in advance.Furthermore,the proposed algorithm is robust to noisy data and can handle with few data points.We illustrate with some examples and applications.