Although 9.4 T magnetic resonance imaging(MRI) has been tested in healthy volunteers,its safety in diabetic patients is unclear.Furthermore,the effects of high static magnetic fields(SMFs),especially gradient vs.unifo...Although 9.4 T magnetic resonance imaging(MRI) has been tested in healthy volunteers,its safety in diabetic patients is unclear.Furthermore,the effects of high static magnetic fields(SMFs),especially gradient vs.uniform fields,have not been investigated in diabetics.Here,we investigated the consequences of exposure to 1.0-9.4 T high SMFs of different gradients(>10 T/m vs.0-10 T/m)on type 1 diabetic(T1D) and type 2 diabetic(T2D) mice.We found that 14 h of prolonged treatment of gradient(as high as 55.5 T/m) high SMFs(1.0-8.6 T) had negative effects on T1D and T2D mice,including spleen,hepatic,and renal tissue impairment and elevated glycosylated serum protein,blood glucose,inflammation,and anxiety,while 9.4 T quasi-uniform SMFs at 0-10 T/m did not induce the same effects.In regular T1D mice(blood glucose>16.7 mmol/L),the>10 T/m gradient high SMFs increased malondialdehyde(P<0.01) and decreased superoxide dismutase(P<0.05).However,in the severe T1D mice(blood glucose≥30.0 mmol/L),the>10 T/m gradient high SMFs significantly increased tissue damage and reduced survival rate.In vitro cellular studies showed that gradient high SMFs increased cellular reactive oxygen species and apoptosis and reduced MS-1 cell number and proliferation.Therefore,this study showed that prolonged exposure to high-field(1.0-8.6 T)>10 T/m gradient SMFs(35-1 380 times higher than that of current clinical MRI)can have negative effects on diabetic mice,especially mice with severe T1D,whereas 9.4 T high SMFs at 0-10T/m did not produce the same effects,providing important information for the future development and clinical application of SMFs,especially high-field MRI.展开更多
Variational modeling approach is often used to interactively design free-form curves and surfaces. Traditionally, a variational problem can be transformed to the optimization of control points. Unfortunately, as the n...Variational modeling approach is often used to interactively design free-form curves and surfaces. Traditionally, a variational problem can be transformed to the optimization of control points. Unfortunately, as the number of basis functions grows, the local support property of B-spline often makes the computation of an optimization system time-consuming. To solve this problem, wavelet basis instead of B-spline basis is used to represent the curves or surfaces. Because the wavelet basis is a hierarchical basis with multiresolution property, the coarse wavelet basis can be used to describe the overall shape of the curves/surfaces, while the finer wavelet basis used to describe the details of the curves/surfaces. Thus, the computing speed of the optimization system can be raised greatly.展开更多
In real machining, the tool paths are composed of a series of short line segments, which constitute groups of sharp corners correspondingly leading to geometry discontinuity in tangent. As a result, high acceleration ...In real machining, the tool paths are composed of a series of short line segments, which constitute groups of sharp corners correspondingly leading to geometry discontinuity in tangent. As a result, high acceleration with high fluctuation usually occurs. If these kinds of tool paths are directly used for machining, the feedrate and quality will be greatly reduced. Thus, generating continuous tool paths is strongly desired. This paper presents a new error-controllable method for generating continuous tool path. Different from the traditional method focusing on fitting the cutter locations, the proposed method realizes globally smoothing the tool path in an error-controllable way. Concretely, it does the smoothing by approaching the newly produced curve to the linear tool path by taking the tolerance requirement as a constraint. That is, the error between the desired tool path and the G01 commands are taken as a boundary condition to ensure the finally smoothed curve being within the given tolerance. Besides, to improve the smoothing ability in case of small corner angle, an improved local smoothing method is also proposed by symmetrically assigning the control points to the two adjacent linear segments with the constrains of tolerance and G3 continuity. Experiments on an open five-axis machine are developed to verify the advantages of the proposed methods.展开更多
基金supported by the National Natural Science Foundation of China (U21A20148, 31900506, 52007185)International Partnership Program of the Chinese Academy of Sciences(116134KYSB20210052)+2 种基金Heye Health Technology Chong Ming Project(HYCMP2021010)CAS President’s International Fellowship Initiative Grant(2022VMA0009)CASHIPS Director’s Fund (BJPY2021A06,2021YZGH04, YZJJ2020QN26, YZJJZX202014, YZJJ2021QN32,YZJJ2023QN43)。
文摘Although 9.4 T magnetic resonance imaging(MRI) has been tested in healthy volunteers,its safety in diabetic patients is unclear.Furthermore,the effects of high static magnetic fields(SMFs),especially gradient vs.uniform fields,have not been investigated in diabetics.Here,we investigated the consequences of exposure to 1.0-9.4 T high SMFs of different gradients(>10 T/m vs.0-10 T/m)on type 1 diabetic(T1D) and type 2 diabetic(T2D) mice.We found that 14 h of prolonged treatment of gradient(as high as 55.5 T/m) high SMFs(1.0-8.6 T) had negative effects on T1D and T2D mice,including spleen,hepatic,and renal tissue impairment and elevated glycosylated serum protein,blood glucose,inflammation,and anxiety,while 9.4 T quasi-uniform SMFs at 0-10 T/m did not induce the same effects.In regular T1D mice(blood glucose>16.7 mmol/L),the>10 T/m gradient high SMFs increased malondialdehyde(P<0.01) and decreased superoxide dismutase(P<0.05).However,in the severe T1D mice(blood glucose≥30.0 mmol/L),the>10 T/m gradient high SMFs significantly increased tissue damage and reduced survival rate.In vitro cellular studies showed that gradient high SMFs increased cellular reactive oxygen species and apoptosis and reduced MS-1 cell number and proliferation.Therefore,this study showed that prolonged exposure to high-field(1.0-8.6 T)>10 T/m gradient SMFs(35-1 380 times higher than that of current clinical MRI)can have negative effects on diabetic mice,especially mice with severe T1D,whereas 9.4 T high SMFs at 0-10T/m did not produce the same effects,providing important information for the future development and clinical application of SMFs,especially high-field MRI.
文摘Variational modeling approach is often used to interactively design free-form curves and surfaces. Traditionally, a variational problem can be transformed to the optimization of control points. Unfortunately, as the number of basis functions grows, the local support property of B-spline often makes the computation of an optimization system time-consuming. To solve this problem, wavelet basis instead of B-spline basis is used to represent the curves or surfaces. Because the wavelet basis is a hierarchical basis with multiresolution property, the coarse wavelet basis can be used to describe the overall shape of the curves/surfaces, while the finer wavelet basis used to describe the details of the curves/surfaces. Thus, the computing speed of the optimization system can be raised greatly.
基金supported by the National Natural Science Foundation of China under Grant Nos.51675440 and 11620101002National Key Research and Development Program of China under Grant No.2017YFB1102800the Fundamental Research Funds for the Central Universities under Grant No.3102018gxc025
文摘In real machining, the tool paths are composed of a series of short line segments, which constitute groups of sharp corners correspondingly leading to geometry discontinuity in tangent. As a result, high acceleration with high fluctuation usually occurs. If these kinds of tool paths are directly used for machining, the feedrate and quality will be greatly reduced. Thus, generating continuous tool paths is strongly desired. This paper presents a new error-controllable method for generating continuous tool path. Different from the traditional method focusing on fitting the cutter locations, the proposed method realizes globally smoothing the tool path in an error-controllable way. Concretely, it does the smoothing by approaching the newly produced curve to the linear tool path by taking the tolerance requirement as a constraint. That is, the error between the desired tool path and the G01 commands are taken as a boundary condition to ensure the finally smoothed curve being within the given tolerance. Besides, to improve the smoothing ability in case of small corner angle, an improved local smoothing method is also proposed by symmetrically assigning the control points to the two adjacent linear segments with the constrains of tolerance and G3 continuity. Experiments on an open five-axis machine are developed to verify the advantages of the proposed methods.