In this paper, we use resolvent operator technology to construct a viscosity approximate algorithm to approximate a common solution of split variational inclusion problem and split fixed point problem for an averaged ...In this paper, we use resolvent operator technology to construct a viscosity approximate algorithm to approximate a common solution of split variational inclusion problem and split fixed point problem for an averaged mapping in real Hilbert spaces. Further, we prove that the sequences generated by the proposed iterative method converge strongly to a common solution of split variational inclusion problem and split fixed point problem for averaged mappings which is also the unique solution of the variational inequality problem. The results presented here improve and extend the corresponding results in this area.展开更多
A new system of the set-valued mixed quasi-variational-like inclusions (SSMQVLI) involving H-η-monotone operators is studied in general Banach spaces without uniform smoothness. By using the resolvent operator tech...A new system of the set-valued mixed quasi-variational-like inclusions (SSMQVLI) involving H-η-monotone operators is studied in general Banach spaces without uniform smoothness. By using the resolvent operator technique of H-η-monotone operators, a new iterative algorithm for finding approximate solutions to SSMQVLI is proposed. It is shown that the iterative sequences generated by the algorithm converge strongly to the exact solution of SSMQVLI under appropriate assumptions. These obtained new results have extended and improved previous results.展开更多
In this article, we introduce a hybrid iterative scheme for finding a common element of the set of solutions for a generalized equilibrium problems, the set of common fixed point for a family of infinite k-strict pseu...In this article, we introduce a hybrid iterative scheme for finding a common element of the set of solutions for a generalized equilibrium problems, the set of common fixed point for a family of infinite k-strict pseudo-contractive mappings, and the set of solutions of the variational inclusion problem with multi-valued maximal monotone mappings and inverse-strongly monotone mappings in Hilbert space. Under suitable conditions, some strong convergence theorems are proved. Our results extends the recent results in G.L.Acedo and H.K.Xu [2], Zhang, Lee and Chan [8], Wakahashi and Toyoda [9], Takahashi and Takahashi [I0] and S. S. Chang, H. W. Joseph Lee and C. K. Chan [II], S.Takahashi and W.Takahashi [12]. Moreover, the method of proof adopted in this article is different from those of [4] and [12].展开更多
The antiplane problem of circular arc rigid line inclusions under antiplane concentrated force and longitudinal shear loading was dealt with. By using Riemann-Schwarz's symmetry principle integrated with the singu...The antiplane problem of circular arc rigid line inclusions under antiplane concentrated force and longitudinal shear loading was dealt with. By using Riemann-Schwarz's symmetry principle integrated with the singularity analysis of complex functions, the general solution of the problem and the closed form solutions for some important practical problems were presented. The stress distribution in the immediate vicinity of circular arc rigid line end was examined in detail. The results show that the singular stress fields near the rigid inclusion tip possess a square-root singularity similar to that for the corresponding crack problem under antiplane shear loading, but no oscillatory character. Furthermore, the stresses are found to depend on geometrical dimension, loading conditions and materials parameters. Some practical results concluded are in agreement with the previous solutions.展开更多
The purpose of this paper is to introduce and study the split equality variational inclusion problems in the setting of Banach spaces. For solving this kind of problems, some new iterative algorithms are proposed. Und...The purpose of this paper is to introduce and study the split equality variational inclusion problems in the setting of Banach spaces. For solving this kind of problems, some new iterative algorithms are proposed. Under suitable conditions, some strong convergence theorems for the sequences generated by the proposed algorithm are proved. As applications, we shall utilize the results presented in the paper to study the split equality feasibility prob- lems in Banach spaces and the split equality equilibrium problem in Banach spaces. The results presented in the paper are new.展开更多
This paper expresses potential function of complex variable in Fabere series and the solution in closed form is provided for the plane stress problems in piezoelectric media with elliptic inclusion. It is shown from t...This paper expresses potential function of complex variable in Fabere series and the solution in closed form is provided for the plane stress problems in piezoelectric media with elliptic inclusion. It is shown from the solution that the stress, strain, electric field intensity and electric displacement in inclusion are all constant. In addition, the electromechanical behavior of piezoelectric influence at the elliptic rim of the infinite matrix with only acting mechanical or electric load is discussed with numerical examples.展开更多
By applying an existence theorem of maximal elements of set-valued mappings in FC-spaces proposed by the author, some new existence theorems of solutions for systems of generalized quasi-variational inclusion (disclu...By applying an existence theorem of maximal elements of set-valued mappings in FC-spaces proposed by the author, some new existence theorems of solutions for systems of generalized quasi-variational inclusion (disclusion) problems are proved in FC-spaces without convexity structures. These results improve and generalize some results in recent publications from closed convex subsets of topological vector spaces to FC-spaces under weaker conditions.展开更多
In this paper, we introduce some new systems of generalized vector quasi-variational inclusion problems and system of generalized vector ideal (resp., proper, Pareto, weak) quasi-optimization problems in locally FC-...In this paper, we introduce some new systems of generalized vector quasi-variational inclusion problems and system of generalized vector ideal (resp., proper, Pareto, weak) quasi-optimization problems in locally FC-uniform spaces without convexity structure. By using the KKM type theorem and Himmelberg type fixed point theorem proposed by the author, some new existence theorems of solutions for the systems of generalized vector quasi-variational inclusion problems are proved. As to its applications, we obtain some existence results of solutions for systems of generalized vector quasi-optimization problems.展开更多
In this article,we propose a new algorithm and prove that the sequence generalized by the algorithm converges strongly to a common element of the set of fixed points for a quasi-pseudo-contractive mapping and a demi-c...In this article,we propose a new algorithm and prove that the sequence generalized by the algorithm converges strongly to a common element of the set of fixed points for a quasi-pseudo-contractive mapping and a demi-contraction mapping and the set of zeros of monotone inclusion problems on Hadamard manifolds.As applications,we use our results to study the minimization problems and equilibrium problems in Hadamard manifolds.展开更多
Inclusive finance is not only an innovation in financial service concepts but also an institutional arrangement to address the imbalance in social and economic development.Therefore,it is particularly necessary to stu...Inclusive finance is not only an innovation in financial service concepts but also an institutional arrangement to address the imbalance in social and economic development.Therefore,it is particularly necessary to study the current development status,development level,and challenges of inclusive finance and to conduct research on these issues.Overall,inclusive finance has demonstrated a positive momentum of development,but improvements are still needed in terms of market players,products and services,and the external ecosystem.China’s inclusive finance is still in its infancy,making it essential to accelerate its development and promote inclusive finance in the country.展开更多
In this paper, we study some new systems of generalized quasi-variational inclusion problems in FC-spaces without convexity structure.By applying an existence theorem of maximal elements of set-valued mappings due to ...In this paper, we study some new systems of generalized quasi-variational inclusion problems in FC-spaces without convexity structure.By applying an existence theorem of maximal elements of set-valued mappings due to the author, some new existence theorems of solutions for the systems of generalized quasi-variational inclusion problems are proved in noncompact FC-spaces. As applications, some existence results of solutions for the system of quasi-optimization problems and mathematical programs with the systems of generalized quasi-variational inclusion constraints are obtained in FC-spaces.展开更多
The approximation solvability of the abstract differential inclusion du/dt∈f(t,u) is presented. The convergence of the approximation solution and the existence of the solution for abstract evolution multivalued probl...The approximation solvability of the abstract differential inclusion du/dt∈f(t,u) is presented. The convergence of the approximation solution and the existence of the solution for abstract evolution multivalued problem are discussed.展开更多
In this article, we consider a differential inclusion of Kirchhoff type with a memory condition at the boundary. We prove the asymptotic behavior of the corresponding solutions. For a wider class of relaxation functio...In this article, we consider a differential inclusion of Kirchhoff type with a memory condition at the boundary. We prove the asymptotic behavior of the corresponding solutions. For a wider class of relaxation functions, we establish a more general decay result, from which the usual exponential and polynomial decay rates are only special cases.展开更多
In this paper,we consider system of variational inclusions and its several spacial cases,namely,alternating point problems,system of variational inequalities,etc.,in the setting of Hadamard manifolds.We propose an ite...In this paper,we consider system of variational inclusions and its several spacial cases,namely,alternating point problems,system of variational inequalities,etc.,in the setting of Hadamard manifolds.We propose an iterative algorithm for solving system of variational inclusions and study its convergence analysis.Several special cases of the proposed algorithm and convergence result are also presented.We present application to constraints minimization problems for bifunctions in the setting of Hadamard manifolds.At the end,we illustrate proposed algorithms and convergence analysis by a numerical example.The algorithms and convergence results of this paper either improve or extend known algorithms and convergence results from linear structure to Hadamard manifolds.展开更多
The elastic field of the infinite homogeneous medium with two circular cylindrical inclusions under the action of a screw dislocation was investigated. The analytical solution was obtained using the conformal mapping...The elastic field of the infinite homogeneous medium with two circular cylindrical inclusions under the action of a screw dislocation was investigated. The analytical solution was obtained using the conformal mapping and the theorem of analytical continuation. It has been shown that the elastic field depends on the shear moduli of individual phase, the geometric parameters of the system, and the position and relative slip of the screw dislocation. The specific cases, that two circular cylindrical inclusions are tangent to each other and the screw dislocation is located in inclusions, were considered. The numerical results were illustrated to show the interaction between the dislocation and two circular cylindrical inclusions. (Edited author abstract) 13 Refs.展开更多
Inclusive Education is one of the most advanced educational concepts at the present time. It advocates raising the participation of children and alleviating the exclusion problems between them at the same time. Althou...Inclusive Education is one of the most advanced educational concepts at the present time. It advocates raising the participation of children and alleviating the exclusion problems between them at the same time. Although China is a large agricultural country, under the situation of fast-growing economic development, an increasing number of adults prefer to work in big city,we call this"working fever". This situation contributes to a growing number of Left-behind children, the problem became severer. As a major receiver of basic education in China, Left-behind children may easily suffering from the problems due to their family. This violates the original intention of Inclusive Education.展开更多
文摘In this paper, we use resolvent operator technology to construct a viscosity approximate algorithm to approximate a common solution of split variational inclusion problem and split fixed point problem for an averaged mapping in real Hilbert spaces. Further, we prove that the sequences generated by the proposed iterative method converge strongly to a common solution of split variational inclusion problem and split fixed point problem for averaged mappings which is also the unique solution of the variational inequality problem. The results presented here improve and extend the corresponding results in this area.
基金Project supported by the Natural Science Foundation of Education Department of Sichuan Province ofChina (No. 07ZA092)the Sichuan Province Leading Academic Discipline Project (No. SZD0406)
文摘A new system of the set-valued mixed quasi-variational-like inclusions (SSMQVLI) involving H-η-monotone operators is studied in general Banach spaces without uniform smoothness. By using the resolvent operator technique of H-η-monotone operators, a new iterative algorithm for finding approximate solutions to SSMQVLI is proposed. It is shown that the iterative sequences generated by the algorithm converge strongly to the exact solution of SSMQVLI under appropriate assumptions. These obtained new results have extended and improved previous results.
基金supported by Scientific Research Fund of Sichuan Provincial Education Department (09ZB102)Scientific Research Fund of Science and Technology Deportment of Sichuan Provincial (2011JYZ011)
文摘In this article, we introduce a hybrid iterative scheme for finding a common element of the set of solutions for a generalized equilibrium problems, the set of common fixed point for a family of infinite k-strict pseudo-contractive mappings, and the set of solutions of the variational inclusion problem with multi-valued maximal monotone mappings and inverse-strongly monotone mappings in Hilbert space. Under suitable conditions, some strong convergence theorems are proved. Our results extends the recent results in G.L.Acedo and H.K.Xu [2], Zhang, Lee and Chan [8], Wakahashi and Toyoda [9], Takahashi and Takahashi [I0] and S. S. Chang, H. W. Joseph Lee and C. K. Chan [II], S.Takahashi and W.Takahashi [12]. Moreover, the method of proof adopted in this article is different from those of [4] and [12].
文摘The antiplane problem of circular arc rigid line inclusions under antiplane concentrated force and longitudinal shear loading was dealt with. By using Riemann-Schwarz's symmetry principle integrated with the singularity analysis of complex functions, the general solution of the problem and the closed form solutions for some important practical problems were presented. The stress distribution in the immediate vicinity of circular arc rigid line end was examined in detail. The results show that the singular stress fields near the rigid inclusion tip possess a square-root singularity similar to that for the corresponding crack problem under antiplane shear loading, but no oscillatory character. Furthermore, the stresses are found to depend on geometrical dimension, loading conditions and materials parameters. Some practical results concluded are in agreement with the previous solutions.
基金supported by the National Natural Science Foundation of China(11361070)the Natural Science Foundation of China Medical University,Taiwan
文摘The purpose of this paper is to introduce and study the split equality variational inclusion problems in the setting of Banach spaces. For solving this kind of problems, some new iterative algorithms are proposed. Under suitable conditions, some strong convergence theorems for the sequences generated by the proposed algorithm are proved. As applications, we shall utilize the results presented in the paper to study the split equality feasibility prob- lems in Banach spaces and the split equality equilibrium problem in Banach spaces. The results presented in the paper are new.
文摘This paper expresses potential function of complex variable in Fabere series and the solution in closed form is provided for the plane stress problems in piezoelectric media with elliptic inclusion. It is shown from the solution that the stress, strain, electric field intensity and electric displacement in inclusion are all constant. In addition, the electromechanical behavior of piezoelectric influence at the elliptic rim of the infinite matrix with only acting mechanical or electric load is discussed with numerical examples.
基金Project supported by the Scientific Research Fund of Sichuan Normal University (No. 09ZDL04)the Sichuan Province Leading Academic Discipline Project (No. SZD0406)
文摘By applying an existence theorem of maximal elements of set-valued mappings in FC-spaces proposed by the author, some new existence theorems of solutions for systems of generalized quasi-variational inclusion (disclusion) problems are proved in FC-spaces without convexity structures. These results improve and generalize some results in recent publications from closed convex subsets of topological vector spaces to FC-spaces under weaker conditions.
基金supported by the Natural Science Foundation of Sichuan Education Department of China(No. 07ZA092)the Sichuan Province Leading Academic Discipline Project (No. SZD0406)
文摘In this paper, we introduce some new systems of generalized vector quasi-variational inclusion problems and system of generalized vector ideal (resp., proper, Pareto, weak) quasi-optimization problems in locally FC-uniform spaces without convexity structure. By using the KKM type theorem and Himmelberg type fixed point theorem proposed by the author, some new existence theorems of solutions for the systems of generalized vector quasi-variational inclusion problems are proved. As to its applications, we obtain some existence results of solutions for systems of generalized vector quasi-optimization problems.
基金This study was supported by the Natural Science Foundation of China Medical University,TaiwanThis work was also supported by Scientific Research Fund of SiChuan Provincial Education Department(14ZA0272).
文摘In this article,we propose a new algorithm and prove that the sequence generalized by the algorithm converges strongly to a common element of the set of fixed points for a quasi-pseudo-contractive mapping and a demi-contraction mapping and the set of zeros of monotone inclusion problems on Hadamard manifolds.As applications,we use our results to study the minimization problems and equilibrium problems in Hadamard manifolds.
文摘Inclusive finance is not only an innovation in financial service concepts but also an institutional arrangement to address the imbalance in social and economic development.Therefore,it is particularly necessary to study the current development status,development level,and challenges of inclusive finance and to conduct research on these issues.Overall,inclusive finance has demonstrated a positive momentum of development,but improvements are still needed in terms of market players,products and services,and the external ecosystem.China’s inclusive finance is still in its infancy,making it essential to accelerate its development and promote inclusive finance in the country.
基金supported by the Scientific Research Fun of Sichuan Normal University(09ZDL04)the Sichuan Province Leading Academic Discipline Project(SZD0406)
文摘In this paper, we study some new systems of generalized quasi-variational inclusion problems in FC-spaces without convexity structure.By applying an existence theorem of maximal elements of set-valued mappings due to the author, some new existence theorems of solutions for the systems of generalized quasi-variational inclusion problems are proved in noncompact FC-spaces. As applications, some existence results of solutions for the system of quasi-optimization problems and mathematical programs with the systems of generalized quasi-variational inclusion constraints are obtained in FC-spaces.
基金the National Natural Science Foundation of China(No.197710 62 )
文摘The approximation solvability of the abstract differential inclusion du/dt∈f(t,u) is presented. The convergence of the approximation solution and the existence of the solution for abstract evolution multivalued problem are discussed.
基金supported by the Dong-A University research fund
文摘In this article, we consider a differential inclusion of Kirchhoff type with a memory condition at the boundary. We prove the asymptotic behavior of the corresponding solutions. For a wider class of relaxation functions, we establish a more general decay result, from which the usual exponential and polynomial decay rates are only special cases.
文摘In this paper,we consider system of variational inclusions and its several spacial cases,namely,alternating point problems,system of variational inequalities,etc.,in the setting of Hadamard manifolds.We propose an iterative algorithm for solving system of variational inclusions and study its convergence analysis.Several special cases of the proposed algorithm and convergence result are also presented.We present application to constraints minimization problems for bifunctions in the setting of Hadamard manifolds.At the end,we illustrate proposed algorithms and convergence analysis by a numerical example.The algorithms and convergence results of this paper either improve or extend known algorithms and convergence results from linear structure to Hadamard manifolds.
基金The project supported by the National Natural Science Foundation of China,the State Education Commission Foundation and Failure Mechanics Lab of the State Education Commission.
文摘The elastic field of the infinite homogeneous medium with two circular cylindrical inclusions under the action of a screw dislocation was investigated. The analytical solution was obtained using the conformal mapping and the theorem of analytical continuation. It has been shown that the elastic field depends on the shear moduli of individual phase, the geometric parameters of the system, and the position and relative slip of the screw dislocation. The specific cases, that two circular cylindrical inclusions are tangent to each other and the screw dislocation is located in inclusions, were considered. The numerical results were illustrated to show the interaction between the dislocation and two circular cylindrical inclusions. (Edited author abstract) 13 Refs.
文摘Inclusive Education is one of the most advanced educational concepts at the present time. It advocates raising the participation of children and alleviating the exclusion problems between them at the same time. Although China is a large agricultural country, under the situation of fast-growing economic development, an increasing number of adults prefer to work in big city,we call this"working fever". This situation contributes to a growing number of Left-behind children, the problem became severer. As a major receiver of basic education in China, Left-behind children may easily suffering from the problems due to their family. This violates the original intention of Inclusive Education.