期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Wandering Subspaces and Quasi-wandering Subspaces in the Hardy-Sobolev Spaces 被引量:1
1
作者 Jie Sheng XIAO Guang Fu CAO 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2017年第12期1684-1692,共9页
In this paper, we prove that for -1/2≤β≤0, suppose M is an invariant subspaces of the Hardy Sobolev spaces Hβ^2(D) for Tz^β, then M zM is a generating wandering subspace of M, that is, M = [M zM]Tz^β. More... In this paper, we prove that for -1/2≤β≤0, suppose M is an invariant subspaces of the Hardy Sobolev spaces Hβ^2(D) for Tz^β, then M zM is a generating wandering subspace of M, that is, M = [M zM]Tz^β. Moreover, any non-trivial invariant subspace M of Hβ^2(D) is also generated by the quasi-wandering subspace PMTz^βM^⊥, that is, M = [PMTz^βM^⊥]Tz^β. 展开更多
关键词 Hardy-Sobolev space invariant subspace wandering subspace quasi-wandering sub- space Beurling type theorem
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部