Because of significantly changed load and complex and variable driving road conditions of commercial vehicles,pneumatic suspension with lower natural frequencies is widely used in commercial vehicle suspension system....Because of significantly changed load and complex and variable driving road conditions of commercial vehicles,pneumatic suspension with lower natural frequencies is widely used in commercial vehicle suspension system.How ever,traditional pneumatic suspension system is hardly to respond the greatly changed load of commercial vehicles To address this issue,a new Gas-Interconnected Quasi-Zero Stiffness Pneumatic Suspension(GIQZSPS)is presented in this paper to improve the vibration isolation performance of commercial vehicle suspension systems under frequent load changes.This new structure adds negative stiffness air chambers on traditional pneumatic suspension to reduce the natural frequency of the suspension.It can adapt to different loads and road conditions by adjusting the solenoid valves between the negative stiffness air chambers.Firstly,a nonlinear mechanical model including the dimensionless stiffness characteristic and interconnected pipeline model is derived for GIQZSPS system.By the nonlinear mechanical model of GIQZSPS system,the force transmissibility rate is chosen as the evaluation index to analyze characteristics.Furthermore,a testing bench simulating 1/4 GIQZSPS system is designed,and the testing analysis of the model validation and isolating performance is carried out.The results show that compared to traditional pneumatic suspension,the GIQZSPS designed in the article has a lower natural frequency.And the system can achieve better vibration isolation performance under different load states by switching the solenoid valves between air chambers.展开更多
An easily stackable multi-layer quasi-zero-stiffness(ML-QZS)meta-structure is proposed to achieve highly efficient vibration isolation performance at low frequency.First,the distributed shape optimization method is us...An easily stackable multi-layer quasi-zero-stiffness(ML-QZS)meta-structure is proposed to achieve highly efficient vibration isolation performance at low frequency.First,the distributed shape optimization method is used to design the unit cel,i.e.,the single-layer QZS(SL-QZS)meta-structure.Second,the stiffness feature of the unit cell is investigated and verified through static experiments.Third,the unit cells are stacked one by one along the direction of vibration isolation,and thus the ML-QZS meta-structure is constructed.Fourth,the dynamic modeling of the ML-QZS vibration isolation metastructure is conducted,and the dynamic responses are obtained from the equations of motion,and verified by finite element(FE)simulations.Finally,a prototype of the ML-QZS vibration isolation meta-structure is fabricated by additive manufacturing,and the vibration isolation performance is evaluated experimentally.The results show that the vibration isolation performance substantially enhances when the number of unit cells increases.More importantly,the ML-QZS meta-structure can be easily extended in the direction of vibration isolation when the unit cells are properly stacked.Hence,the ML-FQZS vibration isolation meta-structure should be a fascinating solution for highly efficient vibration isolation performance at low frequency.展开更多
To achieve stability optimization in low-frequency vibration control for precision instruments,this paper presents a quasi-zero stiffness(QZS)vibration isolator with adjustable nonlinear stiffness.Additionally,the str...To achieve stability optimization in low-frequency vibration control for precision instruments,this paper presents a quasi-zero stiffness(QZS)vibration isolator with adjustable nonlinear stiffness.Additionally,the stress-magnetism coupling model is established through meticulous theoretical derivation.The controllable QZS interval is constructed via parameter design and magnetic control,effectively segregating the high static stiffness bearing section from the QZS vibration isolation section.Furthermore,a displacement control scheme utilizing a magnetic force is proposed to regulate entry into the QZS working range for the vibration isolation platform.Experimental results demonstrate that the operation within this QZS region reduces the peak-to-peak acceleration signal by approximately 66.7%compared with the operation outside this region,thereby significantly improving the low frequency performance of the QZS vibration isolator.展开更多
Existing quasi-zero stiffness(QZS)isolators are reviewed.In terms of their advantages,a novel X-shape QZS isolator combined with the cam-roller-spring mechanism(CRSM)is proposed.Different from the existing X-shape iso...Existing quasi-zero stiffness(QZS)isolators are reviewed.In terms of their advantages,a novel X-shape QZS isolator combined with the cam-roller-spring mechanism(CRSM)is proposed.Different from the existing X-shape isolators,oblique springs are used to enhance the negative stiffness of the system.Meanwhile,the CRSM is used to eliminate the gravity of the loading mass,while the X-shape structure leaves its static position.The existing QZS isolators are demonstrated and classified according to their nonlinearity mechanisms and classical shapes.It is shown that the oblique spring can realize negative stiffness based on the simplest mechanism.The X-shape has a strong capacity of loading mass,while the CRSM can achieve a designed restoring force at any position.The proposed isolator combines all these advantages together.Based on the harmonic balance method(HBM)and the simulation,the displacement transmissibilities of the proposed isolator,the X-shape isolators just with oblique springs,and the X-shape isolators in the traditional form are studied.The results show that the proposed isolator has the lowest beginning isolation frequency and the smallest maximum displacement transmissibility.However,it still has some disadvantages similar to the existing QZS isolators.This means that its parameters should be designed carefully so as to avoid becoming a bistable system,in which there are two potential wells in the potential energy curve and thus the isolation performance will be worsened.展开更多
Human motion induced vibration has very low frequency,ranging from 2 Hz to 5 Hz.Traditional vibration isolators are not effective in low-frequency regions due to the trade-off between the low natural frequency and the...Human motion induced vibration has very low frequency,ranging from 2 Hz to 5 Hz.Traditional vibration isolators are not effective in low-frequency regions due to the trade-off between the low natural frequency and the high load capacity.In this paper,inspired by the human spine,we propose a novel bionic human spine inspired quasi-zero stiffness(QZS)vibration isolator which consists of a cascaded multi-stage negative stiffness structure.The force and stiffness characteristics are investigated first,the dynamic model is established by Newton’s second law,and the isolation performance is analyzed by the harmonic balance method(HBM).Numerical results show that the bionic isolator can obtain better low-frequency isolation performance by increasing the number of negative structure stages,and reducing the damping values and external force values can obtain better low-frequency isolation performance.In comparison with the linear structure and existing traditional QZS isolator,the bionic spine isolator has better vibration isolation performance in low-frequency regions.It paves the way for the design of bionic ultra-low-frequency isolators and shows potential in many engineering applications.展开更多
Combining disk springs having negative stiffness with a rolling-ball in parallel is proposed in this paper. It is used to reduce the system stiffness and the positioning error in a non-ideal environment.The characteri...Combining disk springs having negative stiffness with a rolling-ball in parallel is proposed in this paper. It is used to reduce the system stiffness and the positioning error in a non-ideal environment.The characteristics of a disk spring are analyzed. The dynamic equation of its motion has been obtained based on Newton's second law. After definition of a error margin,the dynamic equation of the motion can be treated as a Duffing oscillator,and the influences of non-dimensional parameters on the stiffness and transmissibility are studied. The natural frequency and transmissibility are achieved in a linearization range,where the ratio of linear to nonlinear items is small enough.The influence of mass ratio and non-dimensional parameters on natural frequency are analyzed. Finally,a comparison of numerical example demonstrates that the QZS system can realize a lower stiffness within an increased range.展开更多
Vibration isolation for low frequency excitation and the power supply for low power monitoring sensors are important issues in bridge engineering.The main problem is how to effectively combine the vibration isolator w...Vibration isolation for low frequency excitation and the power supply for low power monitoring sensors are important issues in bridge engineering.The main problem is how to effectively combine the vibration isolator with the energy harvester to form a multi-functional structure.In this paper,a system called quasi-zero stiffness energy harvesting isolator(QZS-EHI)with triple negative stiffness(TNS)is proposed.The TNS structure consists of linear springs,rigid links,sliders,and ring permanent magnets.Newton’s second law and Kirchhoff’s law construct dynamic equations of the QZS-EHI,and a comparison is made to contrast it with other QZS and linear isolators.The comparison field includes the QZS range,amplitude-frequency relationship,force transmissibility,and energy harvested power.The isolator can be applied to many engineering fields such as bridges,automobiles,and railway transportation.This paper selects bridge engineering as the main field for the dynamic analysis of this system.Considering the multi-span beam bridge,this paper compares different situations including the bridge with QZS-EHI support,with linear stiffness isolator support,and with single beam support.All results show that the QZS-EHI is not only better than the traditional isolator with linear stiffness under both harmonic and stochastic excitation,but also better than some QZS isolators with double or single negative stiffness in bridge vibration isolation and energy harvesting.Theoretical analysis is verified to correspond to the simulation analysis,which means the proposed QZS-EHI has practical application value.展开更多
In this paper,triple quasi-zero stiffness(QZS)passive vibration isolators whose restoring force curve has a three-stage softening effect are proposed.Multi-coupled SD oscillators with three independent geometrical par...In this paper,triple quasi-zero stiffness(QZS)passive vibration isolators whose restoring force curve has a three-stage softening effect are proposed.Multi-coupled SD oscillators with three independent geometrical parameters are used as negative stiffness mechanisms to achieve QZS characteristics at the origin and symmetrical positions on both sides of the origin.Isolation performances of different triple QZS isolators are analyzed to show influences of the selection of QZS regions away from the origin on the range of isolation regions.Pareto optimizations of system parameters are carried out to get a larger range of small restoring force regions and small stiffness regions.Isolation performances of two triple QZS isolators are discussed to show the influence of different Pareto optimization solutions through the comparisons with single and double QZS isolators.Results showed that triple QZS isolators have both the advantages of single and double QZS isolators which results in better isolation performances under both small and large excitation amplitudes.An improvement in isolation performances for triple QZS isolators is found with the decrease in average stiffness due to the appearance of two symmetrical QZS regions away from the origin.Larger displacements of QZS regions away from the origin result in better isolation performances when excitation amplitude is large,and triple QZS characteristics are similar to double QZS isolators at this time.Smaller restoring forces of QZS regions away from the origin lead to better isolation performances when excitation amplitude is small,and triple QZS characteristics are similar to single QZS isolators at this moment.Compared with the decrease in average stiffness,the improvement of isolation performances shows a hysteresis phenomenon due to the difference between static and dynamic characteristics.展开更多
Passive vibration isolation systems have been widely applied due to their low power consumption and high reliability.Nevertheless,the design of vibration isolators is usually limited by the narrow space of installatio...Passive vibration isolation systems have been widely applied due to their low power consumption and high reliability.Nevertheless,the design of vibration isolators is usually limited by the narrow space of installation,and the requirement of heavy loads needs the high supporting stiffness that leads to the narrow isolation frequency band.To improve the vibration isolation performance of passive isolation systems for dynamic loaded equipment,a novel modular quasi-zero stiffness vibration isolator(MQZS-VI)with high linearity and integrated fluid damping is proposed.The MQZS-VI can achieve high-performance vibration isolation under a constraint mounted space,which is realized by highly integrating a novel combined magnetic negative stiffness mechanism into a damping structure:The stator magnets are integrated into the cylinder block,and the moving magnets providing negative-stiffness force also function as the piston supplying damping force simultaneously.An analytical model of the novel MQZS-VI is established and verified first.The effects of geometric parameters on the characteristics of negative stiffness and damping are then elucidated in detail based on the analytical model,and the design procedure is proposed to provide guidelines for the performance optimization of the MQZS-VI.Finally,static and dynamic experiments are conducted on the prototype.The experimental results demonstrate the proposed analytical model can be effectively utilized in the optimal design of the MQZS-VI,and the optimized MQZS-VI broadened greatly the isolation frequency band and suppressed the resonance peak simultaneously,which presented a substantial potential for application in vibration isolation for dynamic loaded equipment.展开更多
A three-magnet-ring quasi-zero stiffness(QZS-TMR)isolator is designed to solve the problem of low-frequency vibration isolation in the vertical direction of precision equipment.QZS-TMR has both positive and negative s...A three-magnet-ring quasi-zero stiffness(QZS-TMR)isolator is designed to solve the problem of low-frequency vibration isolation in the vertical direction of precision equipment.QZS-TMR has both positive and negative stiffness structures.The positive stiffness structure consists of two mutually repelling magnetic rings and the negative stiffness structure consists of two magnetic rings nested within each other.By modulating the relative distance between positive and negative stiffness structures,the isolator can have QZS characteristics.Compared with other QZS isolators,the QZS-TMR is compact and easy to manufacture.In addition,the working load of QZS-TMR can be flexibly adjusted by varying the radial widths of the inner magnetic ring.In this paper,the static analysis of QZS-TMR is carried out to guide the design,and the low-frequency vibration isolation performance is studied.In addition,the experimental prototype of QZS-TMR is designed and manufactured.The static and vibration isolation experiments are carried out on the prototype.The results show that the initial vibration isolation frequency of the experimental prototype is about 4 Hz.The results show an excellent low-frequency vibration isolation effect,which is consistent with the theoretical research.This paper introduces a new approach to the design of the QZS isolator.展开更多
In this paper, an archetypal aseismic system is proposed with 2-degree of freedom based on a smooth and discontinuous(SD)oscillator to avoid the failure of electric power system under the complex excitation of seismic...In this paper, an archetypal aseismic system is proposed with 2-degree of freedom based on a smooth and discontinuous(SD)oscillator to avoid the failure of electric power system under the complex excitation of seismic waves. This model comprises two vibration isolation units for the orthogonal horizontal directions, and each of them admits the stable quasi-zero stiffness(SQZS)with a pair of inclined linear elastic springs. The equation of motion is formulated by using Lagrange equation, and the SQZS condition is obtained by optimizing the parameters of the system. The analysis shows that the system behaves a remarkable vibration isolation performance with low resonant frequency and a large stroke of SQZS interval. The experimental investigations are carried out to show a high sonsistency with the theoretical results, which demonstrates the improvement of aseismic behavior of the proposed model under the seismic wave.展开更多
Vibration reduction has always been one of hot and important topics in mechanical engineering,especially for the special measurement instrument.In this paper,a novel limb-inspired bionic structure is proposed to gener...Vibration reduction has always been one of hot and important topics in mechanical engineering,especially for the special measurement instrument.In this paper,a novel limb-inspired bionic structure is proposed to generate negative stiffness and design a new quasi-zero stiffness isolator via torsion springs,distinguishing from the existing tension spring structures in the literature.The nonlinear mathematical model of the proposed structure is developed and the corresponding dynamic properties are further investigated by using the Harmonic Balance method and ADAMS verification.To evaluate the vibration isolation performance,typical three-springs quasi-zero stiffness(TS QZS)system is selected to compare with the proposed bionic structure.And the graphical processing unit(GPU)parallel technology is applied to perform necessary two-parameter analyses,providing more insights into the effects of parameters on the transmissibility.It is shown that the proposed structure can show advantages over the typical TS QZS system in a wider vibration isolation range for harmonic excitation case and shorter decay time for the impact excitation case.展开更多
In this study,a human-sensitive frequency band vibration isolator(HFBVI)with quasi-zero stiffness(QZS)characteristics for heavy-duty truck seats is designed to improve the comfort of heavy-duty truck drivers on uneven...In this study,a human-sensitive frequency band vibration isolator(HFBVI)with quasi-zero stiffness(QZS)characteristics for heavy-duty truck seats is designed to improve the comfort of heavy-duty truck drivers on uneven roads.First,the analytical expressions for the force and displacement of the HFBVI are derived with the Lagrange equation and d'Alembert's principle,and are validated through the prototype restoring force testing.Second,the harmonic balance method(HBM)is used to obtain the dynamic responses under harmonic excitation,and further the influence of pre-stretching on the dynamic characteristics and transmissibility is discussed.Finally,the experimental prototype of the HFBVI is fabricated,and vibration experiments are conducted under harmonic excitation to verify the vibration isolation performance(VIP)of the proposed vibration isolator.The experimental results indicate that the HFBVI can effectively suppress the frequency band(4-8 Hz)to which the human body is sensitive to vertical vibration.In addition,under real random road spectrum excitation,the HFBVI can achieve low-frequency vibration isolation close to 2 Hz,providing new prospects for ensuring the health of heavy-duty truck drivers.展开更多
Gravity compensation refers to the creation of a constant supporting force to fully or partly counteract the gravitational force for ground verification to simulate the spacecraft dynamics in outer space with zero-or ...Gravity compensation refers to the creation of a constant supporting force to fully or partly counteract the gravitational force for ground verification to simulate the spacecraft dynamics in outer space with zero-or micro-gravity. Gravity compensation is usually implemented via a very low stiffness suspension/supporting unit, and a servo system in series is adopted to extend the simulation range to hundreds of millimeters. The error of suspension force can be up to tens of Newton due to the contact/friction in the suspension/supporting unit and the error of the force/pressure sensor. It has become a bottleneck for the ground verification of spacecraft guidance, navigation, and control systems with extreme requirements, such as tons of payload and fine thrust in sub-Newtons. In this article, a novel gravity compensation method characterized by quasi-zero stiffness plus quasi-zero deformation(QZS-QZD) is proposed. A magnetic negative stiffness spring in parallel with positive springs and aerostatic bearing is adopted to form a QZS supporting unit, and disturbance forces, such as contact or friction, can be eliminated. The deformation of the QZS supporting unit is measured via a displacement sensor, and the QZD control strategy is applied to guarantee the force error of gravity compensation to be less than sub-newtons and irrelevant to the payload. The principle of gravity compensation with QZS-QZD is analyzed, and performance tests on a prototype are carried out. The results show that when the spacecraft moves smoothly, the absolute force error is less than 0.5 N, the relative error of gravity compensation is less than 0.1%, and when collisions with other objects occur, the relative errors are 0.32% and 0.65%. The proposed method can significantly improve the gravity compensation accuracy in comparison with conventional approaches.展开更多
Quasi-zero stiffness(QZS) device is widely studied for their better performance in low-frequency and micro-vibration isolation due to the high-static and low-dynamic(HSLD) stiffness characteristics.The previous QZS is...Quasi-zero stiffness(QZS) device is widely studied for their better performance in low-frequency and micro-vibration isolation due to the high-static and low-dynamic(HSLD) stiffness characteristics.The previous QZS isolator with determined parameters is not suitable for variable isolated mass.In this study,a novel compound regulative quasi-zero stiffness air spring(CRQSAS)has been proposed and designed by introducing a bidirectional regulator for the horizontal air springs.The CRQSAS could change the quasi-zero region depending on the payload.To identify the parameters of the convoluted air spring(CAS) and novel rubber air spring(NRAS),the air spring testing system is established.The stiffness functions of air springs are obtained by the multi-parameter fitting method.According to the structure of the CRQSAS,the dynamic model of the system is analyzed and simplified by Taylor Expansion.The harmonic balance method(HBM) is applied to calculate the frequency response and absolute displacement transmissibility.An experimental prototype has been set up to verify the theoretical model and simulation.Compared with the single NRAS,CRQSAS performs better in low-frequency and micro-amplitude vibration.The research proves that CRQSAS is a passive device widely applied for improving isolation precision under low-frequency vibration.展开更多
基金Supported by National Natural Science Foundation of China (Grant No.51875256)Open Platform Fund of Human Institute of Technology (Grant No.KFA22009)。
文摘Because of significantly changed load and complex and variable driving road conditions of commercial vehicles,pneumatic suspension with lower natural frequencies is widely used in commercial vehicle suspension system.How ever,traditional pneumatic suspension system is hardly to respond the greatly changed load of commercial vehicles To address this issue,a new Gas-Interconnected Quasi-Zero Stiffness Pneumatic Suspension(GIQZSPS)is presented in this paper to improve the vibration isolation performance of commercial vehicle suspension systems under frequent load changes.This new structure adds negative stiffness air chambers on traditional pneumatic suspension to reduce the natural frequency of the suspension.It can adapt to different loads and road conditions by adjusting the solenoid valves between the negative stiffness air chambers.Firstly,a nonlinear mechanical model including the dimensionless stiffness characteristic and interconnected pipeline model is derived for GIQZSPS system.By the nonlinear mechanical model of GIQZSPS system,the force transmissibility rate is chosen as the evaluation index to analyze characteristics.Furthermore,a testing bench simulating 1/4 GIQZSPS system is designed,and the testing analysis of the model validation and isolating performance is carried out.The results show that compared to traditional pneumatic suspension,the GIQZSPS designed in the article has a lower natural frequency.And the system can achieve better vibration isolation performance under different load states by switching the solenoid valves between air chambers.
基金supported by the National Natural Science Foundation of China(Nos.12122206 and 12272129)the Natural Science Foundation of Hunan Province of China(No.2024JJ4004)the Zhejiang Provincial Natural Science Foundation of China(No.LQ24A020006)。
文摘An easily stackable multi-layer quasi-zero-stiffness(ML-QZS)meta-structure is proposed to achieve highly efficient vibration isolation performance at low frequency.First,the distributed shape optimization method is used to design the unit cel,i.e.,the single-layer QZS(SL-QZS)meta-structure.Second,the stiffness feature of the unit cell is investigated and verified through static experiments.Third,the unit cells are stacked one by one along the direction of vibration isolation,and thus the ML-QZS meta-structure is constructed.Fourth,the dynamic modeling of the ML-QZS vibration isolation metastructure is conducted,and the dynamic responses are obtained from the equations of motion,and verified by finite element(FE)simulations.Finally,a prototype of the ML-QZS vibration isolation meta-structure is fabricated by additive manufacturing,and the vibration isolation performance is evaluated experimentally.The results show that the vibration isolation performance substantially enhances when the number of unit cells increases.More importantly,the ML-QZS meta-structure can be easily extended in the direction of vibration isolation when the unit cells are properly stacked.Hence,the ML-FQZS vibration isolation meta-structure should be a fascinating solution for highly efficient vibration isolation performance at low frequency.
基金Project supported by the National Natural Science Foundation of China(Nos.12372187,52321003,12302250)the Fundamental Research Funds for the Central Universities(Nos.KY2090000094 and WK2480000010)+2 种基金the Fellowship of China Postdoctoral Science Foundation(Nos.2024M753103 and 2023M733388)the University Synergy Innovation Program of Anhui Province(No.GXXT-2023-024)the CAS Talent Introduction Program(No.KJ2090007006)。
文摘To achieve stability optimization in low-frequency vibration control for precision instruments,this paper presents a quasi-zero stiffness(QZS)vibration isolator with adjustable nonlinear stiffness.Additionally,the stress-magnetism coupling model is established through meticulous theoretical derivation.The controllable QZS interval is constructed via parameter design and magnetic control,effectively segregating the high static stiffness bearing section from the QZS vibration isolation section.Furthermore,a displacement control scheme utilizing a magnetic force is proposed to regulate entry into the QZS working range for the vibration isolation platform.Experimental results demonstrate that the operation within this QZS region reduces the peak-to-peak acceleration signal by approximately 66.7%compared with the operation outside this region,thereby significantly improving the low frequency performance of the QZS vibration isolator.
基金the National Natural Science Foundation of China(No.12002195)the National Science Fund for Distinguished Young Scholars of China(No.12025204)+1 种基金the Program of Shanghai Municipal Education Commission of China(No.2019-01-07-00-09-E00018)the Pujiang Project of Shanghai Science and Technology Commission of China(No.20PJ1404000)。
文摘Existing quasi-zero stiffness(QZS)isolators are reviewed.In terms of their advantages,a novel X-shape QZS isolator combined with the cam-roller-spring mechanism(CRSM)is proposed.Different from the existing X-shape isolators,oblique springs are used to enhance the negative stiffness of the system.Meanwhile,the CRSM is used to eliminate the gravity of the loading mass,while the X-shape structure leaves its static position.The existing QZS isolators are demonstrated and classified according to their nonlinearity mechanisms and classical shapes.It is shown that the oblique spring can realize negative stiffness based on the simplest mechanism.The X-shape has a strong capacity of loading mass,while the CRSM can achieve a designed restoring force at any position.The proposed isolator combines all these advantages together.Based on the harmonic balance method(HBM)and the simulation,the displacement transmissibilities of the proposed isolator,the X-shape isolators just with oblique springs,and the X-shape isolators in the traditional form are studied.The results show that the proposed isolator has the lowest beginning isolation frequency and the smallest maximum displacement transmissibility.However,it still has some disadvantages similar to the existing QZS isolators.This means that its parameters should be designed carefully so as to avoid becoming a bistable system,in which there are two potential wells in the potential energy curve and thus the isolation performance will be worsened.
基金supported by the National Natural Science Foundation of China(No.12072221)the Natural Science Foundation of Liaoning Province of China(No.2019-KF-01-09)。
文摘Human motion induced vibration has very low frequency,ranging from 2 Hz to 5 Hz.Traditional vibration isolators are not effective in low-frequency regions due to the trade-off between the low natural frequency and the high load capacity.In this paper,inspired by the human spine,we propose a novel bionic human spine inspired quasi-zero stiffness(QZS)vibration isolator which consists of a cascaded multi-stage negative stiffness structure.The force and stiffness characteristics are investigated first,the dynamic model is established by Newton’s second law,and the isolation performance is analyzed by the harmonic balance method(HBM).Numerical results show that the bionic isolator can obtain better low-frequency isolation performance by increasing the number of negative structure stages,and reducing the damping values and external force values can obtain better low-frequency isolation performance.In comparison with the linear structure and existing traditional QZS isolator,the bionic spine isolator has better vibration isolation performance in low-frequency regions.It paves the way for the design of bionic ultra-low-frequency isolators and shows potential in many engineering applications.
基金Supported by National Science and Technology Major Project(2013ZX02104003)
文摘Combining disk springs having negative stiffness with a rolling-ball in parallel is proposed in this paper. It is used to reduce the system stiffness and the positioning error in a non-ideal environment.The characteristics of a disk spring are analyzed. The dynamic equation of its motion has been obtained based on Newton's second law. After definition of a error margin,the dynamic equation of the motion can be treated as a Duffing oscillator,and the influences of non-dimensional parameters on the stiffness and transmissibility are studied. The natural frequency and transmissibility are achieved in a linearization range,where the ratio of linear to nonlinear items is small enough.The influence of mass ratio and non-dimensional parameters on natural frequency are analyzed. Finally,a comparison of numerical example demonstrates that the QZS system can realize a lower stiffness within an increased range.
基金supported by the National Natural Science Foundation of China(Grant No.12272293)Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2022A1515010967 and 2023A1515012821).
文摘Vibration isolation for low frequency excitation and the power supply for low power monitoring sensors are important issues in bridge engineering.The main problem is how to effectively combine the vibration isolator with the energy harvester to form a multi-functional structure.In this paper,a system called quasi-zero stiffness energy harvesting isolator(QZS-EHI)with triple negative stiffness(TNS)is proposed.The TNS structure consists of linear springs,rigid links,sliders,and ring permanent magnets.Newton’s second law and Kirchhoff’s law construct dynamic equations of the QZS-EHI,and a comparison is made to contrast it with other QZS and linear isolators.The comparison field includes the QZS range,amplitude-frequency relationship,force transmissibility,and energy harvested power.The isolator can be applied to many engineering fields such as bridges,automobiles,and railway transportation.This paper selects bridge engineering as the main field for the dynamic analysis of this system.Considering the multi-span beam bridge,this paper compares different situations including the bridge with QZS-EHI support,with linear stiffness isolator support,and with single beam support.All results show that the QZS-EHI is not only better than the traditional isolator with linear stiffness under both harmonic and stochastic excitation,but also better than some QZS isolators with double or single negative stiffness in bridge vibration isolation and energy harvesting.Theoretical analysis is verified to correspond to the simulation analysis,which means the proposed QZS-EHI has practical application value.
基金supported by the National Natural Science Foundation of China(Grant No.11732006)。
文摘In this paper,triple quasi-zero stiffness(QZS)passive vibration isolators whose restoring force curve has a three-stage softening effect are proposed.Multi-coupled SD oscillators with three independent geometrical parameters are used as negative stiffness mechanisms to achieve QZS characteristics at the origin and symmetrical positions on both sides of the origin.Isolation performances of different triple QZS isolators are analyzed to show influences of the selection of QZS regions away from the origin on the range of isolation regions.Pareto optimizations of system parameters are carried out to get a larger range of small restoring force regions and small stiffness regions.Isolation performances of two triple QZS isolators are discussed to show the influence of different Pareto optimization solutions through the comparisons with single and double QZS isolators.Results showed that triple QZS isolators have both the advantages of single and double QZS isolators which results in better isolation performances under both small and large excitation amplitudes.An improvement in isolation performances for triple QZS isolators is found with the decrease in average stiffness due to the appearance of two symmetrical QZS regions away from the origin.Larger displacements of QZS regions away from the origin result in better isolation performances when excitation amplitude is large,and triple QZS characteristics are similar to double QZS isolators at this time.Smaller restoring forces of QZS regions away from the origin lead to better isolation performances when excitation amplitude is small,and triple QZS characteristics are similar to single QZS isolators at this moment.Compared with the decrease in average stiffness,the improvement of isolation performances shows a hysteresis phenomenon due to the difference between static and dynamic characteristics.
基金supported by the National Key R&D Program of China(Grant Nos.2020YFB2007300 and 2020YFB2007601)the National Natural Science Foundation of China(Grant Nos.52075193,52305107,and 52275112)+1 种基金the National Science and Technology Major Project of China(Grant No.2017ZX02101007-002)the Postdoctoral Science Foundation of China(Grant No.2022M711250).
文摘Passive vibration isolation systems have been widely applied due to their low power consumption and high reliability.Nevertheless,the design of vibration isolators is usually limited by the narrow space of installation,and the requirement of heavy loads needs the high supporting stiffness that leads to the narrow isolation frequency band.To improve the vibration isolation performance of passive isolation systems for dynamic loaded equipment,a novel modular quasi-zero stiffness vibration isolator(MQZS-VI)with high linearity and integrated fluid damping is proposed.The MQZS-VI can achieve high-performance vibration isolation under a constraint mounted space,which is realized by highly integrating a novel combined magnetic negative stiffness mechanism into a damping structure:The stator magnets are integrated into the cylinder block,and the moving magnets providing negative-stiffness force also function as the piston supplying damping force simultaneously.An analytical model of the novel MQZS-VI is established and verified first.The effects of geometric parameters on the characteristics of negative stiffness and damping are then elucidated in detail based on the analytical model,and the design procedure is proposed to provide guidelines for the performance optimization of the MQZS-VI.Finally,static and dynamic experiments are conducted on the prototype.The experimental results demonstrate the proposed analytical model can be effectively utilized in the optimal design of the MQZS-VI,and the optimized MQZS-VI broadened greatly the isolation frequency band and suppressed the resonance peak simultaneously,which presented a substantial potential for application in vibration isolation for dynamic loaded equipment.
基金National Key R&D Program of China,Grant/Award Number:2023YFE0125900National Natural Science Foundation of China,Grant/Award Number:12372008+2 种基金Natural Science Foundation of Heilongjiang Province,Grant/Award Number:YQ2022A008Fundamental Research Funds for the Central Universities and the Shandong Provincial Natural Science Foundation,Grant/Award Number:ZR2020MA055Independent Innovation Fund of Tianjin University,Grant/Award Number:2024XJS-0027。
文摘A three-magnet-ring quasi-zero stiffness(QZS-TMR)isolator is designed to solve the problem of low-frequency vibration isolation in the vertical direction of precision equipment.QZS-TMR has both positive and negative stiffness structures.The positive stiffness structure consists of two mutually repelling magnetic rings and the negative stiffness structure consists of two magnetic rings nested within each other.By modulating the relative distance between positive and negative stiffness structures,the isolator can have QZS characteristics.Compared with other QZS isolators,the QZS-TMR is compact and easy to manufacture.In addition,the working load of QZS-TMR can be flexibly adjusted by varying the radial widths of the inner magnetic ring.In this paper,the static analysis of QZS-TMR is carried out to guide the design,and the low-frequency vibration isolation performance is studied.In addition,the experimental prototype of QZS-TMR is designed and manufactured.The static and vibration isolation experiments are carried out on the prototype.The results show that the initial vibration isolation frequency of the experimental prototype is about 4 Hz.The results show an excellent low-frequency vibration isolation effect,which is consistent with the theoretical research.This paper introduces a new approach to the design of the QZS isolator.
基金the financial support from the National Natural Science Foundation of China(Grant Nos.11572096,11732006)
文摘In this paper, an archetypal aseismic system is proposed with 2-degree of freedom based on a smooth and discontinuous(SD)oscillator to avoid the failure of electric power system under the complex excitation of seismic waves. This model comprises two vibration isolation units for the orthogonal horizontal directions, and each of them admits the stable quasi-zero stiffness(SQZS)with a pair of inclined linear elastic springs. The equation of motion is formulated by using Lagrange equation, and the SQZS condition is obtained by optimizing the parameters of the system. The analysis shows that the system behaves a remarkable vibration isolation performance with low resonant frequency and a large stroke of SQZS interval. The experimental investigations are carried out to show a high sonsistency with the theoretical results, which demonstrates the improvement of aseismic behavior of the proposed model under the seismic wave.
基金supported by the National Natural Science Foundation of China(Grants 11832009 and 11672104)the Chair Professor of Lotus Scholars Program in Hunan province(Grants XJT2015408)。
文摘Vibration reduction has always been one of hot and important topics in mechanical engineering,especially for the special measurement instrument.In this paper,a novel limb-inspired bionic structure is proposed to generate negative stiffness and design a new quasi-zero stiffness isolator via torsion springs,distinguishing from the existing tension spring structures in the literature.The nonlinear mathematical model of the proposed structure is developed and the corresponding dynamic properties are further investigated by using the Harmonic Balance method and ADAMS verification.To evaluate the vibration isolation performance,typical three-springs quasi-zero stiffness(TS QZS)system is selected to compare with the proposed bionic structure.And the graphical processing unit(GPU)parallel technology is applied to perform necessary two-parameter analyses,providing more insights into the effects of parameters on the transmissibility.It is shown that the proposed structure can show advantages over the typical TS QZS system in a wider vibration isolation range for harmonic excitation case and shorter decay time for the impact excitation case.
基金supported by the National Natural Science Foundation of China(No.12172226)。
文摘In this study,a human-sensitive frequency band vibration isolator(HFBVI)with quasi-zero stiffness(QZS)characteristics for heavy-duty truck seats is designed to improve the comfort of heavy-duty truck drivers on uneven roads.First,the analytical expressions for the force and displacement of the HFBVI are derived with the Lagrange equation and d'Alembert's principle,and are validated through the prototype restoring force testing.Second,the harmonic balance method(HBM)is used to obtain the dynamic responses under harmonic excitation,and further the influence of pre-stretching on the dynamic characteristics and transmissibility is discussed.Finally,the experimental prototype of the HFBVI is fabricated,and vibration experiments are conducted under harmonic excitation to verify the vibration isolation performance(VIP)of the proposed vibration isolator.The experimental results indicate that the HFBVI can effectively suppress the frequency band(4-8 Hz)to which the human body is sensitive to vertical vibration.In addition,under real random road spectrum excitation,the HFBVI can achieve low-frequency vibration isolation close to 2 Hz,providing new prospects for ensuring the health of heavy-duty truck drivers.
基金supported by the National Key R&D Program of China (Grant No. 2020YFB2007601)the National Natural Science Foundation of China (Grant No. 52075193)the National Major Science and Technology Projects of China (Grant No. 2017ZX02101007-002)。
文摘Gravity compensation refers to the creation of a constant supporting force to fully or partly counteract the gravitational force for ground verification to simulate the spacecraft dynamics in outer space with zero-or micro-gravity. Gravity compensation is usually implemented via a very low stiffness suspension/supporting unit, and a servo system in series is adopted to extend the simulation range to hundreds of millimeters. The error of suspension force can be up to tens of Newton due to the contact/friction in the suspension/supporting unit and the error of the force/pressure sensor. It has become a bottleneck for the ground verification of spacecraft guidance, navigation, and control systems with extreme requirements, such as tons of payload and fine thrust in sub-Newtons. In this article, a novel gravity compensation method characterized by quasi-zero stiffness plus quasi-zero deformation(QZS-QZD) is proposed. A magnetic negative stiffness spring in parallel with positive springs and aerostatic bearing is adopted to form a QZS supporting unit, and disturbance forces, such as contact or friction, can be eliminated. The deformation of the QZS supporting unit is measured via a displacement sensor, and the QZD control strategy is applied to guarantee the force error of gravity compensation to be less than sub-newtons and irrelevant to the payload. The principle of gravity compensation with QZS-QZD is analyzed, and performance tests on a prototype are carried out. The results show that when the spacecraft moves smoothly, the absolute force error is less than 0.5 N, the relative error of gravity compensation is less than 0.1%, and when collisions with other objects occur, the relative errors are 0.32% and 0.65%. The proposed method can significantly improve the gravity compensation accuracy in comparison with conventional approaches.
基金supported by the National Key Research and Development Project (Grant No.2021YFC0122502)the National Natural Science Foundation of China (Grant Nos.52205043 and 52275043)。
文摘Quasi-zero stiffness(QZS) device is widely studied for their better performance in low-frequency and micro-vibration isolation due to the high-static and low-dynamic(HSLD) stiffness characteristics.The previous QZS isolator with determined parameters is not suitable for variable isolated mass.In this study,a novel compound regulative quasi-zero stiffness air spring(CRQSAS)has been proposed and designed by introducing a bidirectional regulator for the horizontal air springs.The CRQSAS could change the quasi-zero region depending on the payload.To identify the parameters of the convoluted air spring(CAS) and novel rubber air spring(NRAS),the air spring testing system is established.The stiffness functions of air springs are obtained by the multi-parameter fitting method.According to the structure of the CRQSAS,the dynamic model of the system is analyzed and simplified by Taylor Expansion.The harmonic balance method(HBM) is applied to calculate the frequency response and absolute displacement transmissibility.An experimental prototype has been set up to verify the theoretical model and simulation.Compared with the single NRAS,CRQSAS performs better in low-frequency and micro-amplitude vibration.The research proves that CRQSAS is a passive device widely applied for improving isolation precision under low-frequency vibration.