Motivated by the result of Chen-Liu-Ru[1],we investigate the value distribution properties for the generalized Gauss maps of weakly complete harmonic surfaces immersed in R^(n) with ramification,which can be seen as a...Motivated by the result of Chen-Liu-Ru[1],we investigate the value distribution properties for the generalized Gauss maps of weakly complete harmonic surfaces immersed in R^(n) with ramification,which can be seen as a generalization of the results in the case of the minimal surfaces.In addition,we give an estimate of the Gauss curvature for the K-quasiconfomal harmonic surfaces whose generalized Gauss map is ramified over a set of hyperplanes.展开更多
For every torsion free Fuchsian group F with Poincaré’s -operator norm ║г║=1, it is proved that there exists an extremal Beltrami differential of F which is also extremal under its own boundary correspondence...For every torsion free Fuchsian group F with Poincaré’s -operator norm ║г║=1, it is proved that there exists an extremal Beltrami differential of F which is also extremal under its own boundary correspondence. It is also proved that the imbedding of the Teichmüller space T(Γ) into the universal Teichmüller space T is not a global isometry unless Γ is an elementary group.展开更多
In this paper,we study the value distribution properties of the generalized Gauss maps of weakly complete harmonic surfaces immersed in R^(m),which is the case where the generalized Gauss mapΦis ramified over a famil...In this paper,we study the value distribution properties of the generalized Gauss maps of weakly complete harmonic surfaces immersed in R^(m),which is the case where the generalized Gauss mapΦis ramified over a family of hypersurfaces{Q_(j)}_(j=1)^(q)in P^(m-1)(C)located in the N-subgeneral position.In addition,we investigate the Gauss curvature estimate for the K-quasiconformal harmonic surfaces immersed in R^(3)whose Gauss maps are ramified over a family of hypersurfaces located in the N-subgeneral position.展开更多
The relationship between Strebel boundary dilatation of a quasisymmetric function h of the unit circle and the dilatation indicated by the change in the modules of the quadrilaterals with vertices on the circle intrig...The relationship between Strebel boundary dilatation of a quasisymmetric function h of the unit circle and the dilatation indicated by the change in the modules of the quadrilaterals with vertices on the circle intrigues many mathematicians. It had been a conjecture for some time that the dilatations Ko(h) and K1(h) of h are equal before Anderson and Hinkkanen disproved this by constructing concrete counterexamples. The independent work of Wu and of Yang completely characterizes the condition for Ko(h) = K1 (h) when h has no substantial boundary point. In this paper, we give a necessary and sufficient condition to determine the equality for h admitting a substantial boundary point.展开更多
The main aim of this paper is to study whether the Gromov hyperbolicity is preserved under some transformations on Riemann surfaces (with their Poincare metrics). We prove that quasiconformal maps between Riemann su...The main aim of this paper is to study whether the Gromov hyperbolicity is preserved under some transformations on Riemann surfaces (with their Poincare metrics). We prove that quasiconformal maps between Riemann surfaces preserve hyperbolicity; however, we also show that arbitrary twists along simple closed geodesics do not preserve it, in general.展开更多
It is well known that certain isotopy classes of oseudo-Anosov maos on a Riemann surface S of non-excluded type can be defined through Dehn twists tα and tβ along simple closed geodesics α and β on S,respectively....It is well known that certain isotopy classes of oseudo-Anosov maos on a Riemann surface S of non-excluded type can be defined through Dehn twists tα and tβ along simple closed geodesics α and β on S,respectively. Let G be the corresponding Fuchsian group acting on the hyperbolic plane H so that H/G≌S.For any point α∈S,define S = S/{α}.In this article, the author gives explicit parabolic elements of G from which he constructs pseudo-Anosov classes on S that can be projected to a given pseudo-Anosov class on S obtained from Thurston's construction.展开更多
A conjecture of Ehrenpreis states that any two compact Riemann surfaces of genus at least two have finite degree unbranched holomorphic covers that are arbitrarily close to each other in moduli space. Here we prove a ...A conjecture of Ehrenpreis states that any two compact Riemann surfaces of genus at least two have finite degree unbranched holomorphic covers that are arbitrarily close to each other in moduli space. Here we prove a weaker result where certain branched covers associated with arithmetic Riemann surfaces are allowed, and investigate the connection of our result with the original conjecture.展开更多
The properties of the extremal sets of extremal quasiconformal mappings are discussed. It is proved that if an extremal Beltrami coefficient μ(z) is not uniquely extremal, then there exists an extremal Beltrami coeff...The properties of the extremal sets of extremal quasiconformal mappings are discussed. It is proved that if an extremal Beltrami coefficient μ(z) is not uniquely extremal, then there exists an extremal Beltrami coefficient ?(z) in its equivalent class and a compact subset E ? △ with positive measure such that the essential upper bound of ?(z) on E is less than the norm of [μ].展开更多
基金supported by the Fundamental Research Funds for the Central Universities(500421360)supported by NNSF of China(11571049,12071047)+1 种基金supported by NNSF of China(11971182)NSF of Fujian Province of China(2019J01066)。
文摘Motivated by the result of Chen-Liu-Ru[1],we investigate the value distribution properties for the generalized Gauss maps of weakly complete harmonic surfaces immersed in R^(n) with ramification,which can be seen as a generalization of the results in the case of the minimal surfaces.In addition,we give an estimate of the Gauss curvature for the K-quasiconfomal harmonic surfaces whose generalized Gauss map is ramified over a set of hyperplanes.
文摘For every torsion free Fuchsian group F with Poincaré’s -operator norm ║г║=1, it is proved that there exists an extremal Beltrami differential of F which is also extremal under its own boundary correspondence. It is also proved that the imbedding of the Teichmüller space T(Γ) into the universal Teichmüller space T is not a global isometry unless Γ is an elementary group.
基金supported by National Natural Science Foundation of China (Grant Nos.10671004,10831004)The Doctoral Education Program Foundation (Grant No.20060001003)
文摘We show that the extremal polygonal quasiconformal mappings are biLipschitz with respect to the hyperbolic metric in the unit disk.
基金supported by the NFSC(11971182,12271189)the NFS of Fujian Province of China(2019J01066,2021J01304)。
文摘In this paper,we study the value distribution properties of the generalized Gauss maps of weakly complete harmonic surfaces immersed in R^(m),which is the case where the generalized Gauss mapΦis ramified over a family of hypersurfaces{Q_(j)}_(j=1)^(q)in P^(m-1)(C)located in the N-subgeneral position.In addition,we investigate the Gauss curvature estimate for the K-quasiconformal harmonic surfaces immersed in R^(3)whose Gauss maps are ramified over a family of hypersurfaces located in the N-subgeneral position.
基金Supported by the National Natural Science Foundation of China(10671174, 10401036)a Foundation for the Author of National Excellent Doctoral Dissertation of China(200518)
文摘The relationship between Strebel boundary dilatation of a quasisymmetric function h of the unit circle and the dilatation indicated by the change in the modules of the quadrilaterals with vertices on the circle intrigues many mathematicians. It had been a conjecture for some time that the dilatations Ko(h) and K1(h) of h are equal before Anderson and Hinkkanen disproved this by constructing concrete counterexamples. The independent work of Wu and of Yang completely characterizes the condition for Ko(h) = K1 (h) when h has no substantial boundary point. In this paper, we give a necessary and sufficient condition to determine the equality for h admitting a substantial boundary point.
文摘The main aim of this paper is to study whether the Gromov hyperbolicity is preserved under some transformations on Riemann surfaces (with their Poincare metrics). We prove that quasiconformal maps between Riemann surfaces preserve hyperbolicity; however, we also show that arbitrary twists along simple closed geodesics do not preserve it, in general.
文摘It is well known that certain isotopy classes of oseudo-Anosov maos on a Riemann surface S of non-excluded type can be defined through Dehn twists tα and tβ along simple closed geodesics α and β on S,respectively. Let G be the corresponding Fuchsian group acting on the hyperbolic plane H so that H/G≌S.For any point α∈S,define S = S/{α}.In this article, the author gives explicit parabolic elements of G from which he constructs pseudo-Anosov classes on S that can be projected to a given pseudo-Anosov class on S obtained from Thurston's construction.
基金the Center of Excellence"Geometric Analysis and Mathematical Physics"of the Academy of Finland
文摘A conjecture of Ehrenpreis states that any two compact Riemann surfaces of genus at least two have finite degree unbranched holomorphic covers that are arbitrarily close to each other in moduli space. Here we prove a weaker result where certain branched covers associated with arithmetic Riemann surfaces are allowed, and investigate the connection of our result with the original conjecture.
基金This work was supported by the National Natural Science Foundation of China(Grant No,10271029).
文摘The properties of the extremal sets of extremal quasiconformal mappings are discussed. It is proved that if an extremal Beltrami coefficient μ(z) is not uniquely extremal, then there exists an extremal Beltrami coefficient ?(z) in its equivalent class and a compact subset E ? △ with positive measure such that the essential upper bound of ?(z) on E is less than the norm of [μ].