The Laguerre polynomial method has been successfully used to investigate the dynamic responses of a half-space.However,it fails to obtain the correct stress at the interfaces in a layered half-space,especially when th...The Laguerre polynomial method has been successfully used to investigate the dynamic responses of a half-space.However,it fails to obtain the correct stress at the interfaces in a layered half-space,especially when there are significant differences in material properties.Therefore,a coupled Legendre-Laguerre polynomial method with analytical integration is proposed.The Rayleigh waves in a one-dimensional(1D)hexagonal quasicrystal(QC)layered half-space with an imperfect interface are investigated.The correctness is validated by comparison with available results.Its computation efficiency is analyzed.The dispersion curves of the phase velocity,displacement distributions,and stress distributions are illustrated.The effects of the phonon-phason coupling and imperfect interface coefficients on the wave characteristics are investigated.Some novel findings reveal that the proposed method is highly efficient for addressing the Rayleigh waves in a QC layered half-space.It can save over 99%of the computation time.This method can be expanded to investigate waves in various layered half-spaces,including earth-layered media and surface acoustic wave(SAW)devices.展开更多
Mg-6Zn-1Y(at.%)ribbons with strengthening precipitates of multi-type nanoquasicrystals were prepared by melt-spinning followed by aging treatments.Microstructural evolution of the rapidly solidified ribbons during iso...Mg-6Zn-1Y(at.%)ribbons with strengthening precipitates of multi-type nanoquasicrystals were prepared by melt-spinning followed by aging treatments.Microstructural evolution of the rapidly solidified ribbons during isothermal aging was comprehensively studied using various electron microscopy techniques.Two new kinds of decagonal quasicrystals were formed in aged ribbons,in addition to precipitation of nanometer icosahedral quasicrystals.Atomic-resolution observations reveal that both decagonal quasicrystals can be modeled by quasiperiodic tiling with decagonal clusters of 2.5 nm in diameter,but overlap of neighboring clusters in both decagonal quasicrystals is different from the Gummelt model observed in other quasicrystals.A shell composed of complex Laves Mg-Zn domains was formed surrounding each decagonal quasicrystal precipitate upon prolonged aging.In addition,all kinds of nanoprecipitates exhibit excellent structure and size stability at 573 K.Our findings may have implications for not only fundamental studies about quasicrystals,but also microstructural manipulation of high-performance Mg alloys.展开更多
The exact solutions for the propagation of Love waves in one-dimensional(1D)hexagonal piezoelectric quasicrystal(PQC)nanoplates with surface effects are derived.An electro-elastic model is developed to investigate the...The exact solutions for the propagation of Love waves in one-dimensional(1D)hexagonal piezoelectric quasicrystal(PQC)nanoplates with surface effects are derived.An electro-elastic model is developed to investigate the anti-plane strain problem of Love wave propagation.By introducing three shape functions,the wave equations and electric balance equations are decoupled into three uncorrelated problems.Satisfying the boundary conditions of the top surface on the covering layer,the interlayer interface,and the matrix,a dispersive equation with the influence of multi-physical field coupling is provided.A surface PQC model is developed to investigate the surface effects on the propagation behaviors of Love waves in quasicrystal(QC)multilayered structures with nanoscale thicknesses.A novel dispersion relation for the PQC structure is derived in an explicit closed form according to the non-classical mechanical and electric boundary conditions.Numerical examples are given to reveal the effects of the boundary conditions,stacking sequence,characteristic scale,and phason fluctuation characteristics on the dispersion curves of Love waves propagating in PQC nanoplates with surface effects.展开更多
A Hamiltonian system is derived for the plane elasticity problem of two-dimensional dodecagonal quasicrystals by introducing the simple state function. By using symplectic elasticity approach, the analytic solutions o...A Hamiltonian system is derived for the plane elasticity problem of two-dimensional dodecagonal quasicrystals by introducing the simple state function. By using symplectic elasticity approach, the analytic solutions of the phonon and phason displacements are obtained further for the quasicrystal plates. In addition, the effectiveness of the approach is verified by comparison with the data of the finite integral transformation method.展开更多
On account of the Mori-Tanaka approach,the effective elastic performance of composites containing decagonal symmetric two-dimensional(2D)quasicrystal(QC)coatings is studied.Explicit expressions for the effective elast...On account of the Mori-Tanaka approach,the effective elastic performance of composites containing decagonal symmetric two-dimensional(2D)quasicrystal(QC)coatings is studied.Explicit expressions for the effective elastic constants of rare-earth QC reinforced magnesium-based composites are provided.Detailed discussion is presented on the effects of the volume fraction of the inclusions,the aspect ratio of the inclusions,the coating thickness,and the coating material parameters on the effective elastic constants of the composites.The results indicate that considering the coating increases the effective elastic constants of the composites to some extent.展开更多
In this paper,we obtain Green’s functions of two-dimensional(2D)piezoelectric quasicrystal(PQC)in half-space and bimaterials.Based on the elastic theory of QCs,the Stroh formalism is used to derive the general soluti...In this paper,we obtain Green’s functions of two-dimensional(2D)piezoelectric quasicrystal(PQC)in half-space and bimaterials.Based on the elastic theory of QCs,the Stroh formalism is used to derive the general solutions of displacements and stresses.Then,we obtain the analytical solutions of half-space and bimaterial Green’s functions.Besides,the interfacial Green’s function for bimaterials is also obtained in the analytical form.Before numerical studies,a comparative study is carried out to validate the present solutions.Typical numerical examples are performed to investigate the effects of multi-physics loadings such as the line force,the line dislocation,the line charge,and the phason line force.As a result,the coupling effect among the phonon field,the phason field,and the electric field is prominent,and the butterfly-shaped contours are characteristic in 2D PQCs.In addition,the changes of material parameters cause variations in physical quantities to a certain degree.展开更多
In this paper,we investigate the interfacial behavior of a thin one-dimensional(1D)hexagonal quasicrystal(QC)film bonded on an elastic substrate subjected to a mismatch strain due to thermal variation.The contact inte...In this paper,we investigate the interfacial behavior of a thin one-dimensional(1D)hexagonal quasicrystal(QC)film bonded on an elastic substrate subjected to a mismatch strain due to thermal variation.The contact interface is assumed to be nonslipping,with both perfectly bonded and debonded boundary conditions.The Fourier transform technique is adopted to establish the integral equations in terms of interfacial shear stress,which are solved as a linear algebraic system by approximating the unknown phonon interfacial shear stress via the series expansion of the Chebyshev polynomials.The expressions are explicitly obtained for the phonon interfacial shear stress,internal normal stress,and stress intensity factors(SIFs).Finally,based on numerical calculations,we briefly discuss the effects of the material mismatch,the geometry of the QC film,and the debonded length and location on stresses and SIFs.展开更多
By means of Muskhelishvili’s method and the technique of generalized conformal mapping,the physical plane problems are transformed into regular mathematical problems in quasicrystals(QCs).The analytical solution to a...By means of Muskhelishvili’s method and the technique of generalized conformal mapping,the physical plane problems are transformed into regular mathematical problems in quasicrystals(QCs).The analytical solution to an elliptical orifice problem with asymmetric cracks in one-dimensional(1D)orthorhombic QCs is obtained.By using the Dugdale-Barenblatt model,the plastic simulation at the crack tip of the elliptical orifice with asymmetric cracks in 1D orthorhombic QCs is performed.Finally,the size of the atomic cohesive force zone is determined precisely,and the size of the atomic cohesive force zone around the crack tip of an elliptical orifice with a single crack or two symmetric cracks is obtained.展开更多
The incorporation of the quasicrystalline phase into the metal matrix offers a wide range of potential applications in particle-reinforced metal-matrix composites.The analytic solution of the piezoelectric quasicrysta...The incorporation of the quasicrystalline phase into the metal matrix offers a wide range of potential applications in particle-reinforced metal-matrix composites.The analytic solution of the piezoelectric quasicrystal(QC)microsphere considering the thermoelectric effect and surface effect contained in the elastic matrix is presented in this study.The governing equations for the QC microsphere in the matrix subject to the external electric loading are derived based on the nonlocal elastic theory,electro-elastic interface theory,and eigenvalue method.A comparison between the existing results and the finite-element simulation validates the present approach.Numerical examples reveal the effects of temperature variation,nonlocal parameters,surface properties,elastic coefficients,and phason coefficients on the phonon,phason,and electric fields.The results indicate that the QC microsphere enhances the mechanical properties of the matrix.The results are useful for the design and understanding of the characterization of QCs in micro-structures.展开更多
The geometric theory of quasicrystal structure is an important subject in quasicrystal research. The authors deduce the quasicrystal plane geometric lattices from the stereograms of quasicrystal space geometric lattic...The geometric theory of quasicrystal structure is an important subject in quasicrystal research. The authors deduce the quasicrystal plane geometric lattices from the stereograms of quasicrystal space geometric lattice , and put them together to form the geometric lattices of quasicrystal structures . The general characteristics of quasicrystal geometric lattices , the relation between structural models and geometric lattices , and the relation formula (k=0 , 2 , 4 , 6 , 8, 10,12) of the symmetric axis between quasicrystal and crystal are discussed based on the quasicrystal space geometric lattices. This is of significant in quasicrystal research .展开更多
Aim To study dislocation elasticity theory in quasicrystals. Methods A dislocation was separated into pure edge part and pure screw part and their superposition was used to find the elastic field. Results and Conclu...Aim To study dislocation elasticity theory in quasicrystals. Methods A dislocation was separated into pure edge part and pure screw part and their superposition was used to find the elastic field. Results and Conclusion The elastic solution of a straight dislocation parallel to the quasiperiodic axis in 1D hexagonal quasicrystals was obtained and the generalized Peach Koehler force on a dislocation in quasicrystals was given.展开更多
The Mg-Zn-Y quasicrystal-reinforced AZ91 D magnesium matrix composites were prepared by squeeze casting process. The effects of applied pressure on microstructure and mechanical properties of the composites were inves...The Mg-Zn-Y quasicrystal-reinforced AZ91 D magnesium matrix composites were prepared by squeeze casting process. The effects of applied pressure on microstructure and mechanical properties of the composites were investigated. The results show that squeeze casting process is an effective method to refine the grain. The composites are mainly composed of α-Mg, β-Mg17Al12 and Mg3Zn6Y icosahedral quasicrystal phase(I-phase). With the increase of applied pressure, the contents of β-Mg17Al12 phase and Mg3Zn6 Y quasicrystal particles increase, further matrix grain refinement occurs and coarse dendritic α-Mg transforms into equiaxed grain structure. The composite exhibits the maximum ultimate tensile strength and elongation of 194.3 MPa and 9.2% respectively when the applied pressure is 100 MPa, and a lot of dimples appear on the tensile fractography. Strengthening mechanisms of quasicrystal-reinforced AZ91 D magnesium matrix composites are chiefly fine-grain strengthening and quasicrystal particles strengthening.展开更多
The fracture theory of cubic quasicrystal was developed. The exact analytic solution of a Mode Ⅲ Griffith crack in the material was obtained by using the Fourier transform and dual integral equations theory, and so t...The fracture theory of cubic quasicrystal was developed. The exact analytic solution of a Mode Ⅲ Griffith crack in the material was obtained by using the Fourier transform and dual integral equations theory, and so the displacement and stress fields, the stress intensity factor and strain energy release rate were determined. The results show that the stress intensity factor is independent of material constants, and the strain energy release rate is dependent on all material constants. These provide important information for studying the deformation and fracture of the new solid material.展开更多
As a new structure of solid matter quasicrystal brings profound new ideas to the traditional condensed matter physics, its elastic equations are more complicated than that of traditional crystal. A contact problem of ...As a new structure of solid matter quasicrystal brings profound new ideas to the traditional condensed matter physics, its elastic equations are more complicated than that of traditional crystal. A contact problem of decagonal two? dimensional quasicrystal material under the action of a rigid flat die is solved satisfactorily by introducing displacement function and using Fourier analysis and dual integral equations theory, and the analytical expressions of stress and displacement fields of the contact problem are achieved. The results show that if the contact displacement is a constant in the contact zone, the vertical contact stress has order -1/2 singularity on the edge of contact zone, which provides the important mechanics parameter for contact deformation of the quasicrystal.展开更多
The structures and electrochemical properties of the Ti1.4V0.6Ni ribbon before and after heat treatment are investigated systematically. The structure of the sample is characterized by X-ray powder diffraction analysi...The structures and electrochemical properties of the Ti1.4V0.6Ni ribbon before and after heat treatment are investigated systematically. The structure of the sample is characterized by X-ray powder diffraction analysis. Electrochemical properties including the discharge capacity, the cyclic stability and the high-rate discharge ability are tested. X-ray powder diffraction analysis shows that after heat treatment at 590 °C for 30 min, all samples mainly consist of the icosahedral quasicrystal phase (I-phase), Ti2Ni phase (FCC), V-based solid solution phase (BCC) and C14 Laves phase (hexagonal). Electrochemical measurements show that the maximum discharge capacity of the alloy electrode after heat treatment is 330.9 mA?h/g under the conditions that the discharge current density is 30 mA/g and the temperature is 30 °C. The result indicates that the cyclic stability and the high-rate discharge ability are all improved. In addition, the electrochemical kinetics of the alloy electrode is also studied by electrochemical impedance spectroscopy (EIS) and hydrogen diffusion coefficient (D).展开更多
Aim To extend several fundamental theorems of conventional elasticity theory to quasicrystalelasticity theory. Methods The basic governing equations of quasicrystal elasticity theory and Gauss's theorem were appli...Aim To extend several fundamental theorems of conventional elasticity theory to quasicrystalelasticity theory. Methods The basic governing equations of quasicrystal elasticity theory and Gauss's theorem were applied in the derivation. Results and Conclusion The principle of virtual work, Betti's reciprocal theorem and the uniqueness theorem of quasicrystal elasticity theory are proud, and some conservative integrals in quasicrystal elasticty theory are obtained.展开更多
The review is devoted to introduce the recent development of the study in mathematical theory and methods of mechanics of quasicrystals, respectively. The mechanics of quasicrystalline materials includes elasticity, p...The review is devoted to introduce the recent development of the study in mathematical theory and methods of mechanics of quasicrystals, respectively. The mechanics of quasicrystalline materials includes elasticity, plasticity, defects, dynamics, fracture etc. In the article some relevant measured data are collected for some important quasicrystal systems, which are necessary for understanding physics and applications of the materials. It is very interesting that the mathe-matical theory and solving methods of the mechanics of quasicrystals have developed rapidly in recent years, which is strongly supported by the experiments and applications. The theoretical development strongly enhances the understanding in-depth the physics including mechanics of the materials. The mathematical theory and computational methods provide a basis to the applications of quasicrystals as functional and structural materials in practice as well. More recently the quasicrystals in soft matter are observed, which challenge the study of based on the quasicrystals of binary and ternary alloys and greatly enlarge the scope of the materials and have aroused a great deal attention of researchers, an introduction about this new phase and its mathematical theory is also given in the review.展开更多
The microstructure of an as-cast Mg-Zn-Er alloy was investigated through scanning electron microscopy (SEM) and transmission electron microscopy (TEM) equipped with energy dispersive spectroscopy (EDS). The resu...The microstructure of an as-cast Mg-Zn-Er alloy was investigated through scanning electron microscopy (SEM) and transmission electron microscopy (TEM) equipped with energy dispersive spectroscopy (EDS). The results indicate that two different second phases, one with eutectoid-lamellar morphology and the other with granular shape, distribute in the α-Mg matrix. The coexistence of the face-centered icosahedral quasicrystalline phase (I-phase) and W-phase with the face-centered cubic structure is found in the as-cast alloy. The coexistence of I-phase and W-phase in the Mg-Zn-Er alloy is because the W-phase is the primary phase and the I-phase forms by peritectic reaction during solidification.展开更多
This paper employes variable function method and the technique of conformal mappingto discuss the anti-plane problem of a circular hole with three unequal cracksin a one-dimensional (1D) hexagonal piezoelectric quas...This paper employes variable function method and the technique of conformal mappingto discuss the anti-plane problem of a circular hole with three unequal cracksin a one-dimensional (1D) hexagonal piezoelectric quasicrystal. Based on the piezoelectricityfundamental equations of quasicrystal materials and the symmetry of1D hexagonal quasicrystal and its linear piezoelectricity effect, 1D hexagonal quasicrystalcontrol equations of anti-plane problem are derived. Applying Cauchyintegral formula, the analytical expressions for the crack tip filed intensity factorsare presented with the assumption that the crack are electrical impermeable andelectrical permeable. With the variation of the hole-size and the crack length, someof the new model of crack are obtained. In the absence of the electric load, theresults match with the classical ones. The numerical results indicate the effects ofgeometric parameters on the field intensity factors. It is verified that the horizontalcrack length and the circle radius can easily promote crack growth. Researchon such issues will provide reliable theoretical value for the engineering materialspreparation and application.展开更多
Based on the fundamental equations of piezoelasticity of quasicrystals (QCs), with the symmetry operations of point groups, the plane piezoelasticity theory of one- dimensional (1D) QCs with all point groups is in...Based on the fundamental equations of piezoelasticity of quasicrystals (QCs), with the symmetry operations of point groups, the plane piezoelasticity theory of one- dimensional (1D) QCs with all point groups is investigated systematically. The gov- erning equations of the piezoelasticity problem for 1D QCs including monoclinic QCs, orthorhombic QCs, tetragonal QCs, and hexagonal QCs are deduced rigorously. The general solutions of the piezoelasticity problem for these QCs are derived by the opera- tor method and the complex variable function method. As an application, an antiplane crack problem is further considered by the semi-inverse method, and the closed-form so- lutions of the phonon, phason, and electric fields near the crack tip are obtained. The path-independent integral derived from the conservation integral equals the energy release rate.展开更多
基金Project supported by the National Natural Science Foundation of China(No.12102131)the Natural Science Foundation of Henan Province of China(No.242300420248)the International Science and Technology Cooperation Project of Henan Province of China(No.242102521010)。
文摘The Laguerre polynomial method has been successfully used to investigate the dynamic responses of a half-space.However,it fails to obtain the correct stress at the interfaces in a layered half-space,especially when there are significant differences in material properties.Therefore,a coupled Legendre-Laguerre polynomial method with analytical integration is proposed.The Rayleigh waves in a one-dimensional(1D)hexagonal quasicrystal(QC)layered half-space with an imperfect interface are investigated.The correctness is validated by comparison with available results.Its computation efficiency is analyzed.The dispersion curves of the phase velocity,displacement distributions,and stress distributions are illustrated.The effects of the phonon-phason coupling and imperfect interface coefficients on the wave characteristics are investigated.Some novel findings reveal that the proposed method is highly efficient for addressing the Rayleigh waves in a QC layered half-space.It can save over 99%of the computation time.This method can be expanded to investigate waves in various layered half-spaces,including earth-layered media and surface acoustic wave(SAW)devices.
基金supported by the National Natural Science Foundation of China (grant number: 51771202, 51971225, 52001225)Key Research of Frontier Science, Chinese Academy of Science (grant number: QYZDY-SSW-JSC207)+1 种基金Ji Hua Laboratory (X210141TL210)Guangdong Province (2021B0301030003)
文摘Mg-6Zn-1Y(at.%)ribbons with strengthening precipitates of multi-type nanoquasicrystals were prepared by melt-spinning followed by aging treatments.Microstructural evolution of the rapidly solidified ribbons during isothermal aging was comprehensively studied using various electron microscopy techniques.Two new kinds of decagonal quasicrystals were formed in aged ribbons,in addition to precipitation of nanometer icosahedral quasicrystals.Atomic-resolution observations reveal that both decagonal quasicrystals can be modeled by quasiperiodic tiling with decagonal clusters of 2.5 nm in diameter,but overlap of neighboring clusters in both decagonal quasicrystals is different from the Gummelt model observed in other quasicrystals.A shell composed of complex Laves Mg-Zn domains was formed surrounding each decagonal quasicrystal precipitate upon prolonged aging.In addition,all kinds of nanoprecipitates exhibit excellent structure and size stability at 573 K.Our findings may have implications for not only fundamental studies about quasicrystals,but also microstructural manipulation of high-performance Mg alloys.
基金Project supported by the National Natural Science Foundation of China(Nos.12272402 and11972365)the China Agricultural University Education Foundation(No.1101-2412001)。
文摘The exact solutions for the propagation of Love waves in one-dimensional(1D)hexagonal piezoelectric quasicrystal(PQC)nanoplates with surface effects are derived.An electro-elastic model is developed to investigate the anti-plane strain problem of Love wave propagation.By introducing three shape functions,the wave equations and electric balance equations are decoupled into three uncorrelated problems.Satisfying the boundary conditions of the top surface on the covering layer,the interlayer interface,and the matrix,a dispersive equation with the influence of multi-physical field coupling is provided.A surface PQC model is developed to investigate the surface effects on the propagation behaviors of Love waves in quasicrystal(QC)multilayered structures with nanoscale thicknesses.A novel dispersion relation for the PQC structure is derived in an explicit closed form according to the non-classical mechanical and electric boundary conditions.Numerical examples are given to reveal the effects of the boundary conditions,stacking sequence,characteristic scale,and phason fluctuation characteristics on the dispersion curves of Love waves propagating in PQC nanoplates with surface effects.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12261064 and 11861048)the Natural Science Foundation of Inner Mongolia,China (Grant Nos.2021MS01004 and 2022QN01008)the High-level Talents Scientific Research Start-up Foundation of Inner Mongolia University (Grant No.10000-21311201/165)。
文摘A Hamiltonian system is derived for the plane elasticity problem of two-dimensional dodecagonal quasicrystals by introducing the simple state function. By using symplectic elasticity approach, the analytic solutions of the phonon and phason displacements are obtained further for the quasicrystal plates. In addition, the effectiveness of the approach is verified by comparison with the data of the finite integral transformation method.
基金Project supported by the Inner Mongolia Natural Science Foundation of China(No.2021MS01013)。
文摘On account of the Mori-Tanaka approach,the effective elastic performance of composites containing decagonal symmetric two-dimensional(2D)quasicrystal(QC)coatings is studied.Explicit expressions for the effective elastic constants of rare-earth QC reinforced magnesium-based composites are provided.Detailed discussion is presented on the effects of the volume fraction of the inclusions,the aspect ratio of the inclusions,the coating thickness,and the coating material parameters on the effective elastic constants of the composites.The results indicate that considering the coating increases the effective elastic constants of the composites to some extent.
基金the National Natural Science Foundation of China(Nos.11972365 and 12102458)。
文摘In this paper,we obtain Green’s functions of two-dimensional(2D)piezoelectric quasicrystal(PQC)in half-space and bimaterials.Based on the elastic theory of QCs,the Stroh formalism is used to derive the general solutions of displacements and stresses.Then,we obtain the analytical solutions of half-space and bimaterial Green’s functions.Besides,the interfacial Green’s function for bimaterials is also obtained in the analytical form.Before numerical studies,a comparative study is carried out to validate the present solutions.Typical numerical examples are performed to investigate the effects of multi-physics loadings such as the line force,the line dislocation,the line charge,and the phason line force.As a result,the coupling effect among the phonon field,the phason field,and the electric field is prominent,and the butterfly-shaped contours are characteristic in 2D PQCs.In addition,the changes of material parameters cause variations in physical quantities to a certain degree.
基金Project supported by the National Natural Science Foundation of China(Nos.11572289,1171407,11702252,and 11902293)the China Postdoctoral Science Foundation(No.2019M652563)。
文摘In this paper,we investigate the interfacial behavior of a thin one-dimensional(1D)hexagonal quasicrystal(QC)film bonded on an elastic substrate subjected to a mismatch strain due to thermal variation.The contact interface is assumed to be nonslipping,with both perfectly bonded and debonded boundary conditions.The Fourier transform technique is adopted to establish the integral equations in terms of interfacial shear stress,which are solved as a linear algebraic system by approximating the unknown phonon interfacial shear stress via the series expansion of the Chebyshev polynomials.The expressions are explicitly obtained for the phonon interfacial shear stress,internal normal stress,and stress intensity factors(SIFs).Finally,based on numerical calculations,we briefly discuss the effects of the material mismatch,the geometry of the QC film,and the debonded length and location on stresses and SIFs.
基金Project supported by the National Natural Science Foundation of China(Nos.12162027 and 11962026)the Natural Science Key Project of Science and Technology Research in Higher Education Institutions of Inner Mongolia Autonomous Region(No.NJZZ22574)。
文摘By means of Muskhelishvili’s method and the technique of generalized conformal mapping,the physical plane problems are transformed into regular mathematical problems in quasicrystals(QCs).The analytical solution to an elliptical orifice problem with asymmetric cracks in one-dimensional(1D)orthorhombic QCs is obtained.By using the Dugdale-Barenblatt model,the plastic simulation at the crack tip of the elliptical orifice with asymmetric cracks in 1D orthorhombic QCs is performed.Finally,the size of the atomic cohesive force zone is determined precisely,and the size of the atomic cohesive force zone around the crack tip of an elliptical orifice with a single crack or two symmetric cracks is obtained.
基金supported by the National Natural Science Foundation of China(Nos.U2067220 and 82000980)。
文摘The incorporation of the quasicrystalline phase into the metal matrix offers a wide range of potential applications in particle-reinforced metal-matrix composites.The analytic solution of the piezoelectric quasicrystal(QC)microsphere considering the thermoelectric effect and surface effect contained in the elastic matrix is presented in this study.The governing equations for the QC microsphere in the matrix subject to the external electric loading are derived based on the nonlocal elastic theory,electro-elastic interface theory,and eigenvalue method.A comparison between the existing results and the finite-element simulation validates the present approach.Numerical examples reveal the effects of temperature variation,nonlocal parameters,surface properties,elastic coefficients,and phason coefficients on the phonon,phason,and electric fields.The results indicate that the QC microsphere enhances the mechanical properties of the matrix.The results are useful for the design and understanding of the characterization of QCs in micro-structures.
文摘The geometric theory of quasicrystal structure is an important subject in quasicrystal research. The authors deduce the quasicrystal plane geometric lattices from the stereograms of quasicrystal space geometric lattice , and put them together to form the geometric lattices of quasicrystal structures . The general characteristics of quasicrystal geometric lattices , the relation between structural models and geometric lattices , and the relation formula (k=0 , 2 , 4 , 6 , 8, 10,12) of the symmetric axis between quasicrystal and crystal are discussed based on the quasicrystal space geometric lattices. This is of significant in quasicrystal research .
文摘Aim To study dislocation elasticity theory in quasicrystals. Methods A dislocation was separated into pure edge part and pure screw part and their superposition was used to find the elastic field. Results and Conclusion The elastic solution of a straight dislocation parallel to the quasiperiodic axis in 1D hexagonal quasicrystals was obtained and the generalized Peach Koehler force on a dislocation in quasicrystals was given.
基金Projects(5120414751274175)supported by the National Natural Science Foundation of China+3 种基金Projects(2011DFA505202014DFA50320)supported by the International Cooperation Program from the Ministry of Science and Technology of ChinaProject(20123088)supported by the Foundation for Graduate Students of Shanxi ProvinceChina
文摘The Mg-Zn-Y quasicrystal-reinforced AZ91 D magnesium matrix composites were prepared by squeeze casting process. The effects of applied pressure on microstructure and mechanical properties of the composites were investigated. The results show that squeeze casting process is an effective method to refine the grain. The composites are mainly composed of α-Mg, β-Mg17Al12 and Mg3Zn6Y icosahedral quasicrystal phase(I-phase). With the increase of applied pressure, the contents of β-Mg17Al12 phase and Mg3Zn6 Y quasicrystal particles increase, further matrix grain refinement occurs and coarse dendritic α-Mg transforms into equiaxed grain structure. The composite exhibits the maximum ultimate tensile strength and elongation of 194.3 MPa and 9.2% respectively when the applied pressure is 100 MPa, and a lot of dimples appear on the tensile fractography. Strengthening mechanisms of quasicrystal-reinforced AZ91 D magnesium matrix composites are chiefly fine-grain strengthening and quasicrystal particles strengthening.
文摘The fracture theory of cubic quasicrystal was developed. The exact analytic solution of a Mode Ⅲ Griffith crack in the material was obtained by using the Fourier transform and dual integral equations theory, and so the displacement and stress fields, the stress intensity factor and strain energy release rate were determined. The results show that the stress intensity factor is independent of material constants, and the strain energy release rate is dependent on all material constants. These provide important information for studying the deformation and fracture of the new solid material.
文摘As a new structure of solid matter quasicrystal brings profound new ideas to the traditional condensed matter physics, its elastic equations are more complicated than that of traditional crystal. A contact problem of decagonal two? dimensional quasicrystal material under the action of a rigid flat die is solved satisfactorily by introducing displacement function and using Fourier analysis and dual integral equations theory, and the analytical expressions of stress and displacement fields of the contact problem are achieved. The results show that if the contact displacement is a constant in the contact zone, the vertical contact stress has order -1/2 singularity on the edge of contact zone, which provides the important mechanics parameter for contact deformation of the quasicrystal.
基金Project (20112216120001) supported by the Doctoral Program of Tertiary Education of the Ministry of Education of ChinaProject(21215141) supported by the Natural Science Foundation of Jilin Province, China+3 种基金Project (20921002) supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of ChinaProjects (21073179, 61106050) supported by the National Natural Science Foundation of ChinaProject (BE2012047) supported by Scientific and Technological Supporting Program of Jiangsu Province of China and GS Yuasa Corporation of JapanProject (11KZ38) supported by and Scientific and Technological Pillar Project of Changchun, China
文摘The structures and electrochemical properties of the Ti1.4V0.6Ni ribbon before and after heat treatment are investigated systematically. The structure of the sample is characterized by X-ray powder diffraction analysis. Electrochemical properties including the discharge capacity, the cyclic stability and the high-rate discharge ability are tested. X-ray powder diffraction analysis shows that after heat treatment at 590 °C for 30 min, all samples mainly consist of the icosahedral quasicrystal phase (I-phase), Ti2Ni phase (FCC), V-based solid solution phase (BCC) and C14 Laves phase (hexagonal). Electrochemical measurements show that the maximum discharge capacity of the alloy electrode after heat treatment is 330.9 mA?h/g under the conditions that the discharge current density is 30 mA/g and the temperature is 30 °C. The result indicates that the cyclic stability and the high-rate discharge ability are all improved. In addition, the electrochemical kinetics of the alloy electrode is also studied by electrochemical impedance spectroscopy (EIS) and hydrogen diffusion coefficient (D).
文摘Aim To extend several fundamental theorems of conventional elasticity theory to quasicrystalelasticity theory. Methods The basic governing equations of quasicrystal elasticity theory and Gauss's theorem were applied in the derivation. Results and Conclusion The principle of virtual work, Betti's reciprocal theorem and the uniqueness theorem of quasicrystal elasticity theory are proud, and some conservative integrals in quasicrystal elasticty theory are obtained.
文摘The review is devoted to introduce the recent development of the study in mathematical theory and methods of mechanics of quasicrystals, respectively. The mechanics of quasicrystalline materials includes elasticity, plasticity, defects, dynamics, fracture etc. In the article some relevant measured data are collected for some important quasicrystal systems, which are necessary for understanding physics and applications of the materials. It is very interesting that the mathe-matical theory and solving methods of the mechanics of quasicrystals have developed rapidly in recent years, which is strongly supported by the experiments and applications. The theoretical development strongly enhances the understanding in-depth the physics including mechanics of the materials. The mathematical theory and computational methods provide a basis to the applications of quasicrystals as functional and structural materials in practice as well. More recently the quasicrystals in soft matter are observed, which challenge the study of based on the quasicrystals of binary and ternary alloys and greatly enlarge the scope of the materials and have aroused a great deal attention of researchers, an introduction about this new phase and its mathematical theory is also given in the review.
基金supported by the National Major Fundamental Research Program of China (No. 2007CB613706)
文摘The microstructure of an as-cast Mg-Zn-Er alloy was investigated through scanning electron microscopy (SEM) and transmission electron microscopy (TEM) equipped with energy dispersive spectroscopy (EDS). The results indicate that two different second phases, one with eutectoid-lamellar morphology and the other with granular shape, distribute in the α-Mg matrix. The coexistence of the face-centered icosahedral quasicrystalline phase (I-phase) and W-phase with the face-centered cubic structure is found in the as-cast alloy. The coexistence of I-phase and W-phase in the Mg-Zn-Er alloy is because the W-phase is the primary phase and the I-phase forms by peritectic reaction during solidification.
文摘This paper employes variable function method and the technique of conformal mappingto discuss the anti-plane problem of a circular hole with three unequal cracksin a one-dimensional (1D) hexagonal piezoelectric quasicrystal. Based on the piezoelectricityfundamental equations of quasicrystal materials and the symmetry of1D hexagonal quasicrystal and its linear piezoelectricity effect, 1D hexagonal quasicrystalcontrol equations of anti-plane problem are derived. Applying Cauchyintegral formula, the analytical expressions for the crack tip filed intensity factorsare presented with the assumption that the crack are electrical impermeable andelectrical permeable. With the variation of the hole-size and the crack length, someof the new model of crack are obtained. In the absence of the electric load, theresults match with the classical ones. The numerical results indicate the effects ofgeometric parameters on the field intensity factors. It is verified that the horizontalcrack length and the circle radius can easily promote crack growth. Researchon such issues will provide reliable theoretical value for the engineering materialspreparation and application.
基金Project supported by the National Nature Science Foundation of China(Nos.11262012,11262017,11462020,and 10761005)the Scientific Research Key Program of Inner Mongolia University of Technology(No.ZD201219)
文摘Based on the fundamental equations of piezoelasticity of quasicrystals (QCs), with the symmetry operations of point groups, the plane piezoelasticity theory of one- dimensional (1D) QCs with all point groups is investigated systematically. The gov- erning equations of the piezoelasticity problem for 1D QCs including monoclinic QCs, orthorhombic QCs, tetragonal QCs, and hexagonal QCs are deduced rigorously. The general solutions of the piezoelasticity problem for these QCs are derived by the opera- tor method and the complex variable function method. As an application, an antiplane crack problem is further considered by the semi-inverse method, and the closed-form so- lutions of the phonon, phason, and electric fields near the crack tip are obtained. The path-independent integral derived from the conservation integral equals the energy release rate.