期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Classification of Quasifinite Modules with Nonzero Central Charges for EALAs of Type A with Coordinates in Quantum Torus
1
作者 Rencai LV 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2009年第2期129-138,共10页
The author first constructs a Lie algebra ∑ :=∑(q, Wd) from rank 3 quantum torus, which is isomorphic to the core of EALAs of type Ad-1 with coordinates in quantum torus Cqd, and then gives the necessary and suff... The author first constructs a Lie algebra ∑ :=∑(q, Wd) from rank 3 quantum torus, which is isomorphic to the core of EALAs of type Ad-1 with coordinates in quantum torus Cqd, and then gives the necessary and sufficient conditions for the highest weight modules to be quasifinite nonzero central charges are Finally the irreducible Z-graded quasifinite ∑-modules with classified. 展开更多
关键词 Core of EALAs Graded modules quasifinite module Highest weightmodule Quantum torus
原文传递
Classification of irreducible non-zero level quasifinite modules over twisted affine Nappi-Witten algebra
2
作者 Xue CHEN 《Frontiers of Mathematics in China》 SCIE CSCD 2016年第2期269-277,共9页
level over module or We obtain that every irreducible quasifinite module with non-zero the twisted affine Nappi-Witten algebra is either a highest weight a lowest one
关键词 Twisted affine Nappi-Witten algebra quasifinite module weight module
原文传递
Highest Weight Representations of a Family of Lie Algebras of Block Type 被引量:1
3
作者 Xiao Qing YUE Yu Cai SU 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2008年第4期687-696,共10页
For an additive subgroup G of a field F of characteristic zero, a Lie algebra B(G) of Block type is defined with basis {Lα,i| α∈G, i∈Z+} and relations [Lα,i, Lβ,j] = (β-α)Lα+β,i+j+(αj-βi)Lα+... For an additive subgroup G of a field F of characteristic zero, a Lie algebra B(G) of Block type is defined with basis {Lα,i| α∈G, i∈Z+} and relations [Lα,i, Lβ,j] = (β-α)Lα+β,i+j+(αj-βi)Lα+β,Lα+β,i+j-1.It is proved that an irreducible highest weight B(Z)-module is quasifinite if and only if it is a proper quotient of a Verma module. Furthermore, for a total order λ on G and any ∧∈B(G)0^*(the dual space of B(G)0 = span{L0,i|i∈Z+}), a Verma B(G)-module M(∧,λ) is defined, and the irreducibility of M(A,λ) is completely determined. 展开更多
关键词 Verma modules Lie algebras of Block type IRREDUCIBILITY quasifinite
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部