In this paper, we are concerned with a weighted quasilinear elliptic equation involving critical Hardy-Sobolev exponent in a bounded G-symmetric domain. By using the symmetric criticality principle of Palais and varia...In this paper, we are concerned with a weighted quasilinear elliptic equation involving critical Hardy-Sobolev exponent in a bounded G-symmetric domain. By using the symmetric criticality principle of Palais and variational method, we establish several existence and multiplicity results of positive G-symmetric solutions under certain appropriate hypotheses on the potential and the nonlinearity.展开更多
This note is a continuation of the work[17].We study the following quasilinear elliptic equations- △pu-μ/|x|p |u|p-2 u=Q(x)|u|Np/N-p -2u,x∈R N,where 1 〈 p 〈 N,0 ≤ μ 〈((N-p)/p)p and Q ∈ L∞(RN).O...This note is a continuation of the work[17].We study the following quasilinear elliptic equations- △pu-μ/|x|p |u|p-2 u=Q(x)|u|Np/N-p -2u,x∈R N,where 1 〈 p 〈 N,0 ≤ μ 〈((N-p)/p)p and Q ∈ L∞(RN).Optimal asymptotic estimates on the gradient of solutions are obtained both at the origin and at the infinity.展开更多
The existence and multiplicity of positive solutions are studied for a class of quasi- linear elliptic equations involving Sobolev critical exponents with mixed Dirichlet-Neumann boundary conditions by the variational...The existence and multiplicity of positive solutions are studied for a class of quasi- linear elliptic equations involving Sobolev critical exponents with mixed Dirichlet-Neumann boundary conditions by the variational methods and some analytical techniques.展开更多
In this paper we give a priori estimates for the maximum modulus of generalizedsolulions of the quasilinear elliplic equations irith anisotropic growth condition.
We investigate the following elliptic equations:⎧⎩⎨−M(∫R Nϕ(|∇u|2)dx)div(ϕ′(|∇u|2)∇u)+|u|α−2 u=λh(x,u),u(x)→0,as|x|→∞,in R N,where N≥2,1<p<q<N,α<q,1<α≤p∗q′/p′with p∗=NpN−p,ϕ(t)behaves like ...We investigate the following elliptic equations:⎧⎩⎨−M(∫R Nϕ(|∇u|2)dx)div(ϕ′(|∇u|2)∇u)+|u|α−2 u=λh(x,u),u(x)→0,as|x|→∞,in R N,where N≥2,1<p<q<N,α<q,1<α≤p∗q′/p′with p∗=NpN−p,ϕ(t)behaves like t q/2 for small t and t p/2 for large t,and p′and q′are the conjugate exponents of p and q,respectively.We study the existence of nontrivial radially symmetric solutions for the problem above by applying the mountain pass theorem and the fountain theorem.Moreover,taking into account the dual fountain theorem,we show that the problem admits a sequence of small-energy,radially symmetric solutions.展开更多
Sufficient conditions are obtained for oscillation of certain quasilinear elliptic equations div(|Du|m-2A(x)Du)+p(x)|u|m-2u=0, x∈ΩRn, where Ω is an exterior domain, m>1, and p(x) is an alternating func...Sufficient conditions are obtained for oscillation of certain quasilinear elliptic equations div(|Du|m-2A(x)Du)+p(x)|u|m-2u=0, x∈ΩRn, where Ω is an exterior domain, m>1, and p(x) is an alternating function. The integral averaging technique is employed to establish our results.展开更多
Since [1] established the Pohozaev identity in bounded domains, this identity has been the principal tool to deal with the non-existence of the equation
The existence ofpositive radialsolutions ofthe equation - div(|Du|p- 2Du)= f(u) is studied in annular dom ains in Rn,n≥2. Itisproved thatiff(0)≥0, f is somewhere negativein (0,∞), lim u→0+ f′(u)= 0and lim u→...The existence ofpositive radialsolutions ofthe equation - div(|Du|p- 2Du)= f(u) is studied in annular dom ains in Rn,n≥2. Itisproved thatiff(0)≥0, f is somewhere negativein (0,∞), lim u→0+ f′(u)= 0and lim u→∞(f(u)/up- 1)= ∞, then thereisa largepositiveradialsolution on allannuli.Iff(0)< 0 and satisfiescertain condi- tions, then the equation has no radialsolution ifthe annuliare too wide.展开更多
Regular semilinear elliptic systems have been studied extensively and many conclusions have been established. However, the elliptic systems involving the Hardy inequality and concave-convex nonlinearities have seldom ...Regular semilinear elliptic systems have been studied extensively and many conclusions have been established. However, the elliptic systems involving the Hardy inequality and concave-convex nonlinearities have seldom been studied and we only find few results. Thus it is necessary for us to investigate the related singular systems deeply. In this paper, a quasilinear elliptic system is investigated, which involves multiple Hardy-type terms and concave-convex nonlinearities. To the best of our knowledge, such a problem has not been discussed. By using a variational method involving the Nehari manifold and some analytical techniques, we prove that there exist at least two positive solutions to the system.展开更多
We study profiles of positive solutions for quasilinear elliptic boundary blow-up problems and Dirichlet problems with the same equation:where ω 〉 0, a(x) is a continuous function satisfying 0 〈 a(x) 〈 1 for...We study profiles of positive solutions for quasilinear elliptic boundary blow-up problems and Dirichlet problems with the same equation:where ω 〉 0, a(x) is a continuous function satisfying 0 〈 a(x) 〈 1 for x ∈Ω, Ω is a bounded smooth domain in R^N. We will see that the profile of a minimal positive boundary blow-up solution of the equation shares some similarities to the profile of a positive minimizer solution of the equation with homogeneous Dirichlet boundary condition.展开更多
Existence and uniqueness results are obtained for positive radial solutions of a class of quasilinear elliptic equations in a N-ball or an annulus without monotone assumptions on the nonlinear term f.It is also proved...Existence and uniqueness results are obtained for positive radial solutions of a class of quasilinear elliptic equations in a N-ball or an annulus without monotone assumptions on the nonlinear term f.It is also proved that there is no non-radial positive solution.展开更多
In this paper, we get the existence of a weak solution of the following inhomogeneous quasilinear elliptic equation with critical growth conditions: where N≥2, f(x,u)~|u|<sup>m-1</sup>e<sup>b|u|&...In this paper, we get the existence of a weak solution of the following inhomogeneous quasilinear elliptic equation with critical growth conditions: where N≥2, f(x,u)~|u|<sup>m-1</sup>e<sup>b|u|<sup>γ</sup></sup>at +∞, with γ=N/N-1, m≥1, b】0.展开更多
This article is concerned with the existence and uniqueness of positive radial solutions for a class of quasilinear elliptic system. With some reasonable assumptions on the nonlinear source functions and their coeffic...This article is concerned with the existence and uniqueness of positive radial solutions for a class of quasilinear elliptic system. With some reasonable assumptions on the nonlinear source functions and their coefficients, the existence and the upper and lower bounds of the positive solutions will be provided by using the fixed point theorem and the maximum principle for the quasilinear elliptic system.展开更多
In this paper, we establish the existence of three weak solutions for quasilinear elliptic equations in an Orlicz-Sobolev space via an abstract result recently obtained by Ricceri in [13].
This work is devoted to studying a quasilinear elliptic boundary value problem with superlinear nonlinearities in a weighted Sobolev space in a domain of R^N. Based on the Galerkin method, Brouwer's theorem and th...This work is devoted to studying a quasilinear elliptic boundary value problem with superlinear nonlinearities in a weighted Sobolev space in a domain of R^N. Based on the Galerkin method, Brouwer's theorem and the weighted compact Sobolev-type embedding theorem, a new result about the existence of solutions is revealed to the problem.展开更多
By using vector Riccati transformation and averaging technique, some oscillation criteria for the quasilinear elliptic differential equation of second order,ΣNi,j=1Di[Ψ(y)Aij(x)|Dy|^p-2Djy]+p(x)f(y)=0,are...By using vector Riccati transformation and averaging technique, some oscillation criteria for the quasilinear elliptic differential equation of second order,ΣNi,j=1Di[Ψ(y)Aij(x)|Dy|^p-2Djy]+p(x)f(y)=0,are obtained. These theorems extend and include earlier results for the semilinear elliptic equation and PDE with p-Laplacian.展开更多
In this paper we consider the bifurcation problem -div A(x, u)=λa(x)|u|^p-2u+f(x,u,λ) in Ω with p 〉 1.Under some proper assumptions on A(x,ξ),a(x) and f(x,u,λ),we show that the existence of an un...In this paper we consider the bifurcation problem -div A(x, u)=λa(x)|u|^p-2u+f(x,u,λ) in Ω with p 〉 1.Under some proper assumptions on A(x,ξ),a(x) and f(x,u,λ),we show that the existence of an unbounded branch of positive solutions bifurcating Irom the principal eigenvalue of the problem --div A(x, u)=λa(x)|u|^p-2u.展开更多
In this paper, we study the existence of multiple solutions for the following quasilinear ellipticsystem:-△pu-μ1︳u︳p-1u/︳x︳=α1up(t)-2/︳x︳t+β1︳v︳β2︳u︳β1-2u,x∈Ω,-△qu-μ2︳v︳q-2v/︳x︳q=α2 vq(s...In this paper, we study the existence of multiple solutions for the following quasilinear ellipticsystem:-△pu-μ1︳u︳p-1u/︳x︳=α1up(t)-2/︳x︳t+β1︳v︳β2︳u︳β1-2u,x∈Ω,-△qu-μ2︳v︳q-2v/︳x︳q=α2 vq(s)-2/︳x︳sv+β2︳u︳β1︳v︳β2-2v,x∈Ω u(x)=v(x)=0 x∈Ω Multiplicity of solutions for the quasilinear problem is obtained via variational method.展开更多
基金Supported by the Natural Science Foundation of China(1107118011171247)Project supported by Scientific and Technological Research Program of Chongqing Municipal Education Commission(KJ130503)
文摘In this paper, we are concerned with a weighted quasilinear elliptic equation involving critical Hardy-Sobolev exponent in a bounded G-symmetric domain. By using the symmetric criticality principle of Palais and variational method, we establish several existence and multiplicity results of positive G-symmetric solutions under certain appropriate hypotheses on the potential and the nonlinearity.
基金financially supported by the Academy of Finland,project 259224
文摘This note is a continuation of the work[17].We study the following quasilinear elliptic equations- △pu-μ/|x|p |u|p-2 u=Q(x)|u|Np/N-p -2u,x∈R N,where 1 〈 p 〈 N,0 ≤ μ 〈((N-p)/p)p and Q ∈ L∞(RN).Optimal asymptotic estimates on the gradient of solutions are obtained both at the origin and at the infinity.
基金Supported by National Natural Science Foundation of China (11071198 11101347)+2 种基金Postdoctor Foundation of China (2012M510363)the Key Project in Science and Technology Research Plan of the Education Department of Hubei Province (D20112605 D20122501)
文摘The existence and multiplicity of positive solutions are studied for a class of quasi- linear elliptic equations involving Sobolev critical exponents with mixed Dirichlet-Neumann boundary conditions by the variational methods and some analytical techniques.
文摘In this paper we give a priori estimates for the maximum modulus of generalizedsolulions of the quasilinear elliplic equations irith anisotropic growth condition.
基金the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(NRF-2019R1F1A1057775)Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2018R1D1A1B07048620).
文摘We investigate the following elliptic equations:⎧⎩⎨−M(∫R Nϕ(|∇u|2)dx)div(ϕ′(|∇u|2)∇u)+|u|α−2 u=λh(x,u),u(x)→0,as|x|→∞,in R N,where N≥2,1<p<q<N,α<q,1<α≤p∗q′/p′with p∗=NpN−p,ϕ(t)behaves like t q/2 for small t and t p/2 for large t,and p′and q′are the conjugate exponents of p and q,respectively.We study the existence of nontrivial radially symmetric solutions for the problem above by applying the mountain pass theorem and the fountain theorem.Moreover,taking into account the dual fountain theorem,we show that the problem admits a sequence of small-energy,radially symmetric solutions.
文摘Sufficient conditions are obtained for oscillation of certain quasilinear elliptic equations div(|Du|m-2A(x)Du)+p(x)|u|m-2u=0, x∈ΩRn, where Ω is an exterior domain, m>1, and p(x) is an alternating function. The integral averaging technique is employed to establish our results.
基金This work is supported in port by the Foundation of Zhongshan University Advanced Research Center.
文摘Since [1] established the Pohozaev identity in bounded domains, this identity has been the principal tool to deal with the non-existence of the equation
文摘The existence ofpositive radialsolutions ofthe equation - div(|Du|p- 2Du)= f(u) is studied in annular dom ains in Rn,n≥2. Itisproved thatiff(0)≥0, f is somewhere negativein (0,∞), lim u→0+ f′(u)= 0and lim u→∞(f(u)/up- 1)= ∞, then thereisa largepositiveradialsolution on allannuli.Iff(0)< 0 and satisfiescertain condi- tions, then the equation has no radialsolution ifthe annuliare too wide.
基金This work is supported by the Youth Foundation, NSFC.
文摘In this paper, we get the existence result of the nontrivial weak solution (λ, u) of the following eigenvalue problem with natural growth conditions.
文摘Regular semilinear elliptic systems have been studied extensively and many conclusions have been established. However, the elliptic systems involving the Hardy inequality and concave-convex nonlinearities have seldom been studied and we only find few results. Thus it is necessary for us to investigate the related singular systems deeply. In this paper, a quasilinear elliptic system is investigated, which involves multiple Hardy-type terms and concave-convex nonlinearities. To the best of our knowledge, such a problem has not been discussed. By using a variational method involving the Nehari manifold and some analytical techniques, we prove that there exist at least two positive solutions to the system.
基金Supported by National Natural Science Foundation of China (Grant No. 10871060)
文摘We study profiles of positive solutions for quasilinear elliptic boundary blow-up problems and Dirichlet problems with the same equation:where ω 〉 0, a(x) is a continuous function satisfying 0 〈 a(x) 〈 1 for x ∈Ω, Ω is a bounded smooth domain in R^N. We will see that the profile of a minimal positive boundary blow-up solution of the equation shares some similarities to the profile of a positive minimizer solution of the equation with homogeneous Dirichlet boundary condition.
基金Supported by the Youth Foundations of National Education Commuttee the Committee on Science and Technology of Henan Province
文摘Existence and uniqueness results are obtained for positive radial solutions of a class of quasilinear elliptic equations in a N-ball or an annulus without monotone assumptions on the nonlinear term f.It is also proved that there is no non-radial positive solution.
基金Supported by the Youth FoundationNatural Science Foundation, People's Republic of China.
文摘In this paper, we get the existence of a weak solution of the following inhomogeneous quasilinear elliptic equation with critical growth conditions: where N≥2, f(x,u)~|u|<sup>m-1</sup>e<sup>b|u|<sup>γ</sup></sup>at +∞, with γ=N/N-1, m≥1, b】0.
基金This work was supported by the National Natural Science Foundation of China (No. 1117 -1092 and 11471164) the Graduate Students Education and Innovation of Jiangsu Province (No. KYZZ_0209) and the Natural Science Foundation of Educational Department of Jiangsu Province (No. 08KJB110005).
文摘This article is concerned with the existence and uniqueness of positive radial solutions for a class of quasilinear elliptic system. With some reasonable assumptions on the nonlinear source functions and their coefficients, the existence and the upper and lower bounds of the positive solutions will be provided by using the fixed point theorem and the maximum principle for the quasilinear elliptic system.
基金Supported by the National Natural Science Foundation of China(Grant No.11626038)
文摘In this paper, we establish the existence of three weak solutions for quasilinear elliptic equations in an Orlicz-Sobolev space via an abstract result recently obtained by Ricceri in [13].
基金supported by the National Natural Science Foundation of China(No.11171220)the Shanghai Leading Academic Discipline Project(No.XTKX2012)the Hujiang Foundation of China(No.B14005)
文摘This work is devoted to studying a quasilinear elliptic boundary value problem with superlinear nonlinearities in a weighted Sobolev space in a domain of R^N. Based on the Galerkin method, Brouwer's theorem and the weighted compact Sobolev-type embedding theorem, a new result about the existence of solutions is revealed to the problem.
基金supported partly by the NsF of China(10571064)NSF of Guangdong Province(04010364)
文摘By using vector Riccati transformation and averaging technique, some oscillation criteria for the quasilinear elliptic differential equation of second order,ΣNi,j=1Di[Ψ(y)Aij(x)|Dy|^p-2Djy]+p(x)f(y)=0,are obtained. These theorems extend and include earlier results for the semilinear elliptic equation and PDE with p-Laplacian.
基金the National Natural Science Foundation of China 10471022the Science and Technology Major Projects Grant 104090 of the ministry of Education of China
文摘The structure of positive solutions of the p-Laplacian systems is discussed via bifurcation theory and monotone techniques.
基金Supported by the National Natural Science Foundation of China (No. 10671211)
文摘In this paper we consider the bifurcation problem -div A(x, u)=λa(x)|u|^p-2u+f(x,u,λ) in Ω with p 〉 1.Under some proper assumptions on A(x,ξ),a(x) and f(x,u,λ),we show that the existence of an unbounded branch of positive solutions bifurcating Irom the principal eigenvalue of the problem --div A(x, u)=λa(x)|u|^p-2u.
基金Supported by National Science Foundation of China(No.11175092,11201248 and No.61271398)Ningbao Scientific Research Foundation(2009B21003)K.C.Wong Magna Fund in Ningbo University
文摘In this paper, we study the existence of multiple solutions for the following quasilinear ellipticsystem:-△pu-μ1︳u︳p-1u/︳x︳=α1up(t)-2/︳x︳t+β1︳v︳β2︳u︳β1-2u,x∈Ω,-△qu-μ2︳v︳q-2v/︳x︳q=α2 vq(s)-2/︳x︳sv+β2︳u︳β1︳v︳β2-2v,x∈Ω u(x)=v(x)=0 x∈Ω Multiplicity of solutions for the quasilinear problem is obtained via variational method.