It is to establish existence of a weak solution for quasilinear elliptic problems assuming that the nonlinear term is critical.The potential V is bounded from below and above by positive constants.Because we are consi...It is to establish existence of a weak solution for quasilinear elliptic problems assuming that the nonlinear term is critical.The potential V is bounded from below and above by positive constants.Because we are considering a critical term which interacts with higher eigenvalues for the linear problem,we need to apply a linking theorem.Notice that the lack of compactness,which comes from critical problems and the fact that we are working in the whole space,are some obstacles for us to ensure existence of solutions for quasilinear elliptic problems.The main feature in this article is to restore some compact results which are essential in variational methods.Recall that compactness conditions such as the Palais-Smale condition for the associated energy functional is not available in our setting.This difficulty is overcame by taking into account some fine estimates on the critical level for an auxiliary energy functional.展开更多
We are concerned with the large-time behavior of 3D quasilinear hyperbolic equations with nonlinear damping.The main novelty of this paper is two-fold.First,we prove the optimal decay rates of the second and third ord...We are concerned with the large-time behavior of 3D quasilinear hyperbolic equations with nonlinear damping.The main novelty of this paper is two-fold.First,we prove the optimal decay rates of the second and third order spatial derivatives of the solution,which are the same as those of the heat equation,and in particular,are faster than ones of previous related works.Second,for well-chosen initial data,we also show that the lower optimal L^(2) convergence rate of the k(∈[0,3])-order spatial derivatives of the solution is(1+t)^(-(2+2k)/4).Therefore,our decay rates are optimal in this sense.The proofs are based on the Fourier splitting method,low-frequency and high-frequency decomposition,and delicate energy estimates.展开更多
In this paper,the study of gradient regularity for solutions of a class of elliptic problems of p-Laplace type is offered.In particular,we prove a global result concerning Lorentz-Morrey regularity of the non-homogene...In this paper,the study of gradient regularity for solutions of a class of elliptic problems of p-Laplace type is offered.In particular,we prove a global result concerning Lorentz-Morrey regularity of the non-homogeneous boundary data problem:-div((s^(2)+|▽u|^(2)p-2/2)▽u)=-div(|f|^(p-2)f)+g inΩ,u=h in■Ω,with the(sub-elliptic)degeneracy condition s∈[0,1]and with mixed data f∈L^(p)(Q;R^(n)),g∈Lp/(p-1)(Ω;R^(n))for p∈(1,n).This problem naturally arises in various applications such as dynamics of non-Newtonian fluid theory,electro-rheology,radiation of heat,plastic moulding and many others.Building on the idea of level-set inequality on fractional maximal distribution functions,it enables us to carry out a global regularity result of the solution via fractional maximal operators.Due to the significance of M_(α)and its relation with Riesz potential,estimates via fractional maximal functions allow us to bound oscillations not only for solution but also its fractional derivatives of orderα.Our approach therefore has its own interest.展开更多
In this paper, we consider a system of coupled quasilinear viscoelastic equa- tions with nonlinear damping. We use the perturbed energy method to show the general decay rate estimates of energy of solutions, which ext...In this paper, we consider a system of coupled quasilinear viscoelastic equa- tions with nonlinear damping. We use the perturbed energy method to show the general decay rate estimates of energy of solutions, which extends some existing results concerning a general decay for a single equation to the case of system, and a nonlinear system of viscoelastic wave equations to a quasilinear system.展开更多
We study the existence problem for the equations of first order quasilinearequations in several inpendent variables with singular initial data Lp(P<∞). We the convergence of the Lp(P<∞) bounded approximating s...We study the existence problem for the equations of first order quasilinearequations in several inpendent variables with singular initial data Lp(P<∞). We the convergence of the Lp(P<∞) bounded approximating sequences generatedby the method of vanishing viscosity. The uniqueness of the generalized solutions whichcan be obtained by the method of vanishing viscosity is also obtained.展开更多
The present paper investigates the asymptotic behavior of solutions for a class of second order inhomogeneous quasilinear equations on a three dimensional semiinfinite cylinder. A Phragmen-Lindelof type alternative is...The present paper investigates the asymptotic behavior of solutions for a class of second order inhomogeneous quasilinear equations on a three dimensional semiinfinite cylinder. A Phragmen-Lindelof type alternative is obtained, i.e., it is shown that in appropriate norms solutions of the equations either grow or decay as some spatial variable tends to infinity.展开更多
In this paper, the existence and nonexistence of solutions to a class of quasilinear elliptic equations with nonsmooth functionals are discussed, and the results obtained are applied to quasilinear SchrSdinger equatio...In this paper, the existence and nonexistence of solutions to a class of quasilinear elliptic equations with nonsmooth functionals are discussed, and the results obtained are applied to quasilinear SchrSdinger equations with negative parameter which arose from the study of self-channeling of high-power ultrashort laser in matter.展开更多
In this paper, we study the following generalized quasilinear Schrodinger equa- tions with critical or supercritical growths-div(g2(u)△u) + g(u)g'(u)|△u|2 + V(x)u = f(x, u) + λ|u|P-2 u, x ∈ RN,...In this paper, we study the following generalized quasilinear Schrodinger equa- tions with critical or supercritical growths-div(g2(u)△u) + g(u)g'(u)|△u|2 + V(x)u = f(x, u) + λ|u|P-2 u, x ∈ RN,where λ 〉 0, N ≥ 3, g : R →R+ is a C1 even function, g(0) = 1, g'(s) ≥ 0 for all s ≥ 0, lim |s|→+ ∞g(s)/|s|α-1:= β 〉 0 for some α≥ 1 and (α- 1)g(s) 〉 g'(s)s for all s 〉 0 and p≥α2*.Under some suitable conditions, we prove that the equation has a nontrivial solution for smallλ 〉 0 using a change of variables and variational method.展开更多
For a class of asymptotically periodic quasilinear Schr?dinger equations with critical growth the existence of ground states is proved.First applying a change of variables the quasilinear Schr?dinger equations are r...For a class of asymptotically periodic quasilinear Schr?dinger equations with critical growth the existence of ground states is proved.First applying a change of variables the quasilinear Schr?dinger equations are reduced to semilinear Schr?dinger equations in which the corresponding functional is well defined in H1 RN .Moreover there is a one-to-one correspondence between ground states of the semilinear Schr?dinger equations and the quasilinear Schr?dinger equations.Then the mountain-pass theorem is used to find nontrivial solutions for the semilinear Schr?dinger equations. Finally under certain monotonicity conditions using the Nehari manifold method and the concentration compactness principle the nontrivial solutions are found to be exactly the same as the ground states of the semilinear Schr?dinger equations.展开更多
This note is a continuation of the work[17].We study the following quasilinear elliptic equations- △pu-μ/|x|p |u|p-2 u=Q(x)|u|Np/N-p -2u,x∈R N,where 1 〈 p 〈 N,0 ≤ μ 〈((N-p)/p)p and Q ∈ L∞(RN).O...This note is a continuation of the work[17].We study the following quasilinear elliptic equations- △pu-μ/|x|p |u|p-2 u=Q(x)|u|Np/N-p -2u,x∈R N,where 1 〈 p 〈 N,0 ≤ μ 〈((N-p)/p)p and Q ∈ L∞(RN).Optimal asymptotic estimates on the gradient of solutions are obtained both at the origin and at the infinity.展开更多
Based on the Lie group method, the potential symmetries and invariant solutions for generalized quasilinear hyperbolic equations are studied. To obtain the invariant solutions in an explicit form, the physically inter...Based on the Lie group method, the potential symmetries and invariant solutions for generalized quasilinear hyperbolic equations are studied. To obtain the invariant solutions in an explicit form, the physically interesting situations with potential symmetries are focused on, and the conservation laws for these equations in three physi- cally interesting cases are found by using the partial Lagrangian approach.展开更多
A type of quasilinear Schrodinger equations in two space dimensions which describe attractive Bose-Einstein condensates in physics is discussed. By establishing the property of the equation and applying the energy met...A type of quasilinear Schrodinger equations in two space dimensions which describe attractive Bose-Einstein condensates in physics is discussed. By establishing the property of the equation and applying the energy method, the blowup of solutions to the equation are proved under certain conditions. At the same time, by the variational method, a sutficient condition of global existence which is related to the ground state of a classical elliptic equation is obtained.展开更多
The existence and multiplicity of positive solutions are studied for a class of quasi- linear elliptic equations involving Sobolev critical exponents with mixed Dirichlet-Neumann boundary conditions by the variational...The existence and multiplicity of positive solutions are studied for a class of quasi- linear elliptic equations involving Sobolev critical exponents with mixed Dirichlet-Neumann boundary conditions by the variational methods and some analytical techniques.展开更多
This article concerns the existence of weak solutions of the first boundary value problem for a kind of strongly degenerate quasilinear parabolic equation in the anisotropic Sobolev Space. With the theory of anisotrop...This article concerns the existence of weak solutions of the first boundary value problem for a kind of strongly degenerate quasilinear parabolic equation in the anisotropic Sobolev Space. With the theory of anisotropic Sobolev spaces an existence result is proved.展开更多
In this article, we consider quasilinear <span style="white-space:nowrap;">Schrödinger</span> equations of the form <img src="Edit_4d91f4a8-f399-4895-9edd-b0d77ec07654.bmp" ...In this article, we consider quasilinear <span style="white-space:nowrap;">Schrödinger</span> equations of the form <img src="Edit_4d91f4a8-f399-4895-9edd-b0d77ec07654.bmp" alt="" /> Such equations have been derived as models of several physical phenomena. The nonlinearity here corresponds to the superfluid film equation in plasma physics. Unlike all known results in the literature, the nonlinearity is allowed to be indefinite. It is very interesting from physical and mathematical viewpoint. By mountain pass theorem and some special techniques, we prove the existence of solutions for the quasilinear <span style="white-space:nowrap;">Schrödinger</span> equations with indefinite nonlinearity. This indefinite problem had never been considered so far. So our main results can be regarded as complementary work in the literature.展开更多
In this paper, we use the concentration-compactness principle together with the Mountain Pass Lemma to get the existence of nontrivial solutions and the existence of infinitely many solutions of the problem need not b...In this paper, we use the concentration-compactness principle together with the Mountain Pass Lemma to get the existence of nontrivial solutions and the existence of infinitely many solutions of the problem need not be compact operators from E to R~1.展开更多
In this paper we give a priori estimates for the maximum modulus of generalizedsolulions of the quasilinear elliplic equations irith anisotropic growth condition.
We investigate the following elliptic equations:⎧⎩⎨−M(∫R Nϕ(|∇u|2)dx)div(ϕ′(|∇u|2)∇u)+|u|α−2 u=λh(x,u),u(x)→0,as|x|→∞,in R N,where N≥2,1<p<q<N,α<q,1<α≤p∗q′/p′with p∗=NpN−p,ϕ(t)behaves like ...We investigate the following elliptic equations:⎧⎩⎨−M(∫R Nϕ(|∇u|2)dx)div(ϕ′(|∇u|2)∇u)+|u|α−2 u=λh(x,u),u(x)→0,as|x|→∞,in R N,where N≥2,1<p<q<N,α<q,1<α≤p∗q′/p′with p∗=NpN−p,ϕ(t)behaves like t q/2 for small t and t p/2 for large t,and p′and q′are the conjugate exponents of p and q,respectively.We study the existence of nontrivial radially symmetric solutions for the problem above by applying the mountain pass theorem and the fountain theorem.Moreover,taking into account the dual fountain theorem,we show that the problem admits a sequence of small-energy,radially symmetric solutions.展开更多
In this paper, the Nagumo theorem and the fixed-point theorem are used to prove the existence and the uniqueness and to estimate the asymptotic expansion of the shock solutions of the boundary value problems for a cla...In this paper, the Nagumo theorem and the fixed-point theorem are used to prove the existence and the uniqueness and to estimate the asymptotic expansion of the shock solutions of the boundary value problems for a class of quasilinear differential equations, the asymptotic expansion of solution of any orders including boundary is obtained.展开更多
In this article,we study the generalized quasilinear Schrodinger equation-div(ε^2g^2(u)▽u)+ε^2g(u)g′(u)|▽u|^2+V(x)u=K(x)|u|^p-2u,x∈R^N where A≥3,e>0,4<p<,22*,g∈C 1(R,R+),V∈C(R^N)∩L∞(R^N)has a posit...In this article,we study the generalized quasilinear Schrodinger equation-div(ε^2g^2(u)▽u)+ε^2g(u)g′(u)|▽u|^2+V(x)u=K(x)|u|^p-2u,x∈R^N where A≥3,e>0,4<p<,22*,g∈C 1(R,R+),V∈C(R^N)∩L∞(R^N)has a positive global minimum,and K∈C(R^N)∩L∞(R^N)has a positive global maximum.By using a change of variable,we obtain the existence and concentration behavior of ground state solutions for this problem and establish a phenomenon of exponential decay.展开更多
基金partially supported by CNPq with(429955/2018-9)partially suported by CNPq(309026/2020-2)FAPDF with(16809.78.45403.25042017)。
文摘It is to establish existence of a weak solution for quasilinear elliptic problems assuming that the nonlinear term is critical.The potential V is bounded from below and above by positive constants.Because we are considering a critical term which interacts with higher eigenvalues for the linear problem,we need to apply a linking theorem.Notice that the lack of compactness,which comes from critical problems and the fact that we are working in the whole space,are some obstacles for us to ensure existence of solutions for quasilinear elliptic problems.The main feature in this article is to restore some compact results which are essential in variational methods.Recall that compactness conditions such as the Palais-Smale condition for the associated energy functional is not available in our setting.This difficulty is overcame by taking into account some fine estimates on the critical level for an auxiliary energy functional.
基金partially supported by the National Nature Science Foundation of China(12271114)the Guangxi Natural Science Foundation(2023JJD110009,2019JJG110003,2019AC20214)+2 种基金the Innovation Project of Guangxi Graduate Education(JGY2023061)the Key Laboratory of Mathematical Model and Application(Guangxi Normal University)the Education Department of Guangxi Zhuang Autonomous Region。
文摘We are concerned with the large-time behavior of 3D quasilinear hyperbolic equations with nonlinear damping.The main novelty of this paper is two-fold.First,we prove the optimal decay rates of the second and third order spatial derivatives of the solution,which are the same as those of the heat equation,and in particular,are faster than ones of previous related works.Second,for well-chosen initial data,we also show that the lower optimal L^(2) convergence rate of the k(∈[0,3])-order spatial derivatives of the solution is(1+t)^(-(2+2k)/4).Therefore,our decay rates are optimal in this sense.The proofs are based on the Fourier splitting method,low-frequency and high-frequency decomposition,and delicate energy estimates.
基金supported by Ministry of Education and Training(Vietnam),under grant number B2023-SPS-01。
文摘In this paper,the study of gradient regularity for solutions of a class of elliptic problems of p-Laplace type is offered.In particular,we prove a global result concerning Lorentz-Morrey regularity of the non-homogeneous boundary data problem:-div((s^(2)+|▽u|^(2)p-2/2)▽u)=-div(|f|^(p-2)f)+g inΩ,u=h in■Ω,with the(sub-elliptic)degeneracy condition s∈[0,1]and with mixed data f∈L^(p)(Q;R^(n)),g∈Lp/(p-1)(Ω;R^(n))for p∈(1,n).This problem naturally arises in various applications such as dynamics of non-Newtonian fluid theory,electro-rheology,radiation of heat,plastic moulding and many others.Building on the idea of level-set inequality on fractional maximal distribution functions,it enables us to carry out a global regularity result of the solution via fractional maximal operators.Due to the significance of M_(α)and its relation with Riesz potential,estimates via fractional maximal functions allow us to bound oscillations not only for solution but also its fractional derivatives of orderα.Our approach therefore has its own interest.
基金supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education,Science and Technology (2011-0007870)
文摘In this paper, we consider a system of coupled quasilinear viscoelastic equa- tions with nonlinear damping. We use the perturbed energy method to show the general decay rate estimates of energy of solutions, which extends some existing results concerning a general decay for a single equation to the case of system, and a nonlinear system of viscoelastic wave equations to a quasilinear system.
文摘We study the existence problem for the equations of first order quasilinearequations in several inpendent variables with singular initial data Lp(P<∞). We the convergence of the Lp(P<∞) bounded approximating sequences generatedby the method of vanishing viscosity. The uniqueness of the generalized solutions whichcan be obtained by the method of vanishing viscosity is also obtained.
文摘The present paper investigates the asymptotic behavior of solutions for a class of second order inhomogeneous quasilinear equations on a three dimensional semiinfinite cylinder. A Phragmen-Lindelof type alternative is obtained, i.e., it is shown that in appropriate norms solutions of the equations either grow or decay as some spatial variable tends to infinity.
基金supported by NSF of China(11201488),supported by NSF of China(11371146)Hunan Provincial Natural Science Foundation of China(14JJ4002)
文摘In this paper, the existence and nonexistence of solutions to a class of quasilinear elliptic equations with nonsmooth functionals are discussed, and the results obtained are applied to quasilinear SchrSdinger equations with negative parameter which arose from the study of self-channeling of high-power ultrashort laser in matter.
基金supported in part by the National Natural Science Foundation of China(1150140311461023)the Shanxi Province Science Foundation for Youths under grant 2013021001-3
文摘In this paper, we study the following generalized quasilinear Schrodinger equa- tions with critical or supercritical growths-div(g2(u)△u) + g(u)g'(u)|△u|2 + V(x)u = f(x, u) + λ|u|P-2 u, x ∈ RN,where λ 〉 0, N ≥ 3, g : R →R+ is a C1 even function, g(0) = 1, g'(s) ≥ 0 for all s ≥ 0, lim |s|→+ ∞g(s)/|s|α-1:= β 〉 0 for some α≥ 1 and (α- 1)g(s) 〉 g'(s)s for all s 〉 0 and p≥α2*.Under some suitable conditions, we prove that the equation has a nontrivial solution for smallλ 〉 0 using a change of variables and variational method.
基金The Scientific Innovation Research of College Graduates in Jiangsu Province(No.CXLX_0069)
文摘For a class of asymptotically periodic quasilinear Schr?dinger equations with critical growth the existence of ground states is proved.First applying a change of variables the quasilinear Schr?dinger equations are reduced to semilinear Schr?dinger equations in which the corresponding functional is well defined in H1 RN .Moreover there is a one-to-one correspondence between ground states of the semilinear Schr?dinger equations and the quasilinear Schr?dinger equations.Then the mountain-pass theorem is used to find nontrivial solutions for the semilinear Schr?dinger equations. Finally under certain monotonicity conditions using the Nehari manifold method and the concentration compactness principle the nontrivial solutions are found to be exactly the same as the ground states of the semilinear Schr?dinger equations.
基金financially supported by the Academy of Finland,project 259224
文摘This note is a continuation of the work[17].We study the following quasilinear elliptic equations- △pu-μ/|x|p |u|p-2 u=Q(x)|u|Np/N-p -2u,x∈R N,where 1 〈 p 〈 N,0 ≤ μ 〈((N-p)/p)p and Q ∈ L∞(RN).Optimal asymptotic estimates on the gradient of solutions are obtained both at the origin and at the infinity.
文摘Based on the Lie group method, the potential symmetries and invariant solutions for generalized quasilinear hyperbolic equations are studied. To obtain the invariant solutions in an explicit form, the physically interesting situations with potential symmetries are focused on, and the conservation laws for these equations in three physi- cally interesting cases are found by using the partial Lagrangian approach.
基金Project supported by the Scientific Research Foundation of Sichuan Provincial Commission of Education(No.SZD0406)the Scientific Research Fund of Sichuan Normal University
文摘A type of quasilinear Schrodinger equations in two space dimensions which describe attractive Bose-Einstein condensates in physics is discussed. By establishing the property of the equation and applying the energy method, the blowup of solutions to the equation are proved under certain conditions. At the same time, by the variational method, a sutficient condition of global existence which is related to the ground state of a classical elliptic equation is obtained.
基金Supported by National Natural Science Foundation of China (11071198 11101347)+2 种基金Postdoctor Foundation of China (2012M510363)the Key Project in Science and Technology Research Plan of the Education Department of Hubei Province (D20112605 D20122501)
文摘The existence and multiplicity of positive solutions are studied for a class of quasi- linear elliptic equations involving Sobolev critical exponents with mixed Dirichlet-Neumann boundary conditions by the variational methods and some analytical techniques.
基金The project is supported by NNSF of China (10371116)
文摘This article concerns the existence of weak solutions of the first boundary value problem for a kind of strongly degenerate quasilinear parabolic equation in the anisotropic Sobolev Space. With the theory of anisotropic Sobolev spaces an existence result is proved.
文摘In this article, we consider quasilinear <span style="white-space:nowrap;">Schrödinger</span> equations of the form <img src="Edit_4d91f4a8-f399-4895-9edd-b0d77ec07654.bmp" alt="" /> Such equations have been derived as models of several physical phenomena. The nonlinearity here corresponds to the superfluid film equation in plasma physics. Unlike all known results in the literature, the nonlinearity is allowed to be indefinite. It is very interesting from physical and mathematical viewpoint. By mountain pass theorem and some special techniques, we prove the existence of solutions for the quasilinear <span style="white-space:nowrap;">Schrödinger</span> equations with indefinite nonlinearity. This indefinite problem had never been considered so far. So our main results can be regarded as complementary work in the literature.
文摘In this paper, we use the concentration-compactness principle together with the Mountain Pass Lemma to get the existence of nontrivial solutions and the existence of infinitely many solutions of the problem need not be compact operators from E to R~1.
文摘In this paper we give a priori estimates for the maximum modulus of generalizedsolulions of the quasilinear elliplic equations irith anisotropic growth condition.
基金the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(NRF-2019R1F1A1057775)Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2018R1D1A1B07048620).
文摘We investigate the following elliptic equations:⎧⎩⎨−M(∫R Nϕ(|∇u|2)dx)div(ϕ′(|∇u|2)∇u)+|u|α−2 u=λh(x,u),u(x)→0,as|x|→∞,in R N,where N≥2,1<p<q<N,α<q,1<α≤p∗q′/p′with p∗=NpN−p,ϕ(t)behaves like t q/2 for small t and t p/2 for large t,and p′and q′are the conjugate exponents of p and q,respectively.We study the existence of nontrivial radially symmetric solutions for the problem above by applying the mountain pass theorem and the fountain theorem.Moreover,taking into account the dual fountain theorem,we show that the problem admits a sequence of small-energy,radially symmetric solutions.
文摘In this paper, the Nagumo theorem and the fixed-point theorem are used to prove the existence and the uniqueness and to estimate the asymptotic expansion of the shock solutions of the boundary value problems for a class of quasilinear differential equations, the asymptotic expansion of solution of any orders including boundary is obtained.
基金supported by the National Natural Science Foundation of China(11661053,11771198,11901345,11901276,11961045 and 11971485)partly by the Provincial Natural Science Foundation of Jiangxi,China(20161BAB201009 and 20181BAB201003)+1 种基金the Outstanding Youth Scientist Foundation Plan of Jiangxi(20171BCB23004)the Yunnan Local Colleges Applied Basic Research Projects(2017FH001-011).
文摘In this article,we study the generalized quasilinear Schrodinger equation-div(ε^2g^2(u)▽u)+ε^2g(u)g′(u)|▽u|^2+V(x)u=K(x)|u|^p-2u,x∈R^N where A≥3,e>0,4<p<,22*,g∈C 1(R,R+),V∈C(R^N)∩L∞(R^N)has a positive global minimum,and K∈C(R^N)∩L∞(R^N)has a positive global maximum.By using a change of variable,we obtain the existence and concentration behavior of ground state solutions for this problem and establish a phenomenon of exponential decay.