The leaderless and leader-following finite-time consensus problems for multiagent systems(MASs)described by first-order linear hyperbolic partial differential equations(PDEs)are studied.The Lyapunov theorem and the un...The leaderless and leader-following finite-time consensus problems for multiagent systems(MASs)described by first-order linear hyperbolic partial differential equations(PDEs)are studied.The Lyapunov theorem and the unique solvability result for the first-order linear hyperbolic PDE are used to obtain some sufficient conditions for ensuring the finite-time consensus of the leaderless and leader-following MASs driven by first-order linear hyperbolic PDEs.Finally,two numerical examples are provided to verify the effectiveness of the proposed methods.展开更多
Sufficient conditions are obtained for the oscillation of solutions of the systems of quasilinear hyperbolic differential equation with deviating arguments under nonlinear boundary condition.
In this paper, we study a boundary value problem of nonlinear fractional dif- ferential equations of order q (1 〈 q 〈 2) with non-separated integral boundary conditions. Some new existence and uniqueness results a...In this paper, we study a boundary value problem of nonlinear fractional dif- ferential equations of order q (1 〈 q 〈 2) with non-separated integral boundary conditions. Some new existence and uniqueness results are obtained by using some standard fixed point theorems and Leray-Schauder degree theory. Some illustrative examples are also presented. We extend previous results even in the integer case q = 2.展开更多
In this paper, we prove an important existence and uniqueness theorem for a fractional order Fredholm – Volterra integro-differential equation with non-local and global boundary conditions by converting it to the cor...In this paper, we prove an important existence and uniqueness theorem for a fractional order Fredholm – Volterra integro-differential equation with non-local and global boundary conditions by converting it to the corresponding well known Fredholm integral equation of second kind. The considered in this paper has been solved already numerically in [1].展开更多
In this paper, we use the concentration-compactness principle together with the Mountain Pass Lemma to get the existence of nontrivial solutions and the existence of infinitely many solutions of the problem need not b...In this paper, we use the concentration-compactness principle together with the Mountain Pass Lemma to get the existence of nontrivial solutions and the existence of infinitely many solutions of the problem need not be compact operators from E to R~1.展开更多
By using the upper and lower solutions method and fixed point theory,we investigate a class of fourth-order singular differential equations with the Sturm-Liouville Boundary conditions.Some sufficient conditions are o...By using the upper and lower solutions method and fixed point theory,we investigate a class of fourth-order singular differential equations with the Sturm-Liouville Boundary conditions.Some sufficient conditions are obtained for the existence of C2[0,1] positive solutions and C3[0,1] positive solutions.展开更多
This paper investigates some known difference schemes for the numerical solution to parabolic differential equation with derivative boundary conditions by the fictitious domain method.The stability and convergence in...This paper investigates some known difference schemes for the numerical solution to parabolic differential equation with derivative boundary conditions by the fictitious domain method.The stability and convergence in L ∞ are proven.展开更多
In this paper, we consider a singular perturbation elliptic-parabolic partial differential equation for periodic boundary value problem, and construct a difference scheme. Using the method of decomposing the singular ...In this paper, we consider a singular perturbation elliptic-parabolic partial differential equation for periodic boundary value problem, and construct a difference scheme. Using the method of decomposing the singular term from its solution and combining an asymptotic expansion of the equation, we prove that the scheme constructed by this paper converges uniformly to the solution of its original problem with O(r+h2).展开更多
In this paper we study the forced oscillations of boundary value problems of a class of higher order functional partial differential equations.The principal tool is an everaging techniqe which enables one to establish...In this paper we study the forced oscillations of boundary value problems of a class of higher order functional partial differential equations.The principal tool is an everaging techniqe which enables one to establish oscillation in terms of related functional differential inequallities.展开更多
In this paper we study the singular perturbation of boundary value problems with perturbations both in the operator and in the interval ends. So as to prove the existence and uniqueness of solution of perturbed proble...In this paper we study the singular perturbation of boundary value problems with perturbations both in the operator and in the interval ends. So as to prove the existence and uniqueness of solution of perturbed problem, to establish the asymptotic expression involving three parameters. Thus, the iterative equation of finding the asymptotic solution is derived and the estimation of the remainder term is given out. We extend results of [l]-[5].展开更多
New form of necessary conditions for optimality (NCO) is considered. They can be useful for design the direct infinite- dimensional optimization algorithms for systems described by partial differential equations (PDE)...New form of necessary conditions for optimality (NCO) is considered. They can be useful for design the direct infinite- dimensional optimization algorithms for systems described by partial differential equations (PDE). Appropriate algo-rithms for unconstrained minimizing a functional are considered and tested. To construct the algorithms, new form of NCO is used. Such approach demonstrates fast uniform convergence at optimal solution in infinite-dimensional space.展开更多
In this paper, we study existence and uniqueness of solutions to nonlinear three point boundary value problems for fractional differential equation of the type c D δ 0+ u(t) = f (t, u(t), c D σ 0+ u(t)), t...In this paper, we study existence and uniqueness of solutions to nonlinear three point boundary value problems for fractional differential equation of the type c D δ 0+ u(t) = f (t, u(t), c D σ 0+ u(t)), t ∈ [0, T ], u(0) = αu(η), u(T ) = βu(η), where 1 〈 δ 〈 2, 0 〈 σ 〈 1, α, β∈ R, η∈ (0, T ), αη(1 -β) + (1-α)(T βη) = 0 and c D δ 0+ , c D σ 0+ are the Caputo fractional derivatives. We use Schauder fixed point theorem and contraction mapping principle to obtain existence and uniqueness results. Examples are also included to show the applicability of our results.展开更多
In this paper, we study a class of singular fractional differential system with Riemann-Stieltjes integral boundary condition by constructing a new cone and using Leggett-Williams fixed point theorem. The existence of...In this paper, we study a class of singular fractional differential system with Riemann-Stieltjes integral boundary condition by constructing a new cone and using Leggett-Williams fixed point theorem. The existence of multiple positive solutions is obtained. An example is presented to illustrate our main results.展开更多
In the poper, the method of separating singularity is applied to study the uniformly difference scheme of a singular perturbation problem for a semilinear ordinary differential equation with mixed boundary value condi...In the poper, the method of separating singularity is applied to study the uniformly difference scheme of a singular perturbation problem for a semilinear ordinary differential equation with mixed boundary value condition. The uniform convergence on small parameter ε of order one for an IVin type difference scheme constructed is proved. At the end of the paper, a numerical example is given. The computing results coincide with the theoretical analysis.展开更多
In this paper, we are concerned with the numerical solution of second-order partial differential equations. We analyse the use of the Sine Transform precondilioners for the solution of linear systems arising from the ...In this paper, we are concerned with the numerical solution of second-order partial differential equations. We analyse the use of the Sine Transform precondilioners for the solution of linear systems arising from the discretization of p.d.e. via the preconditioned conjugate gradient method. For the second-order partial differential equations with Dirichlel boundary conditions, we prove that the condition number of the preconditioned system is O(1) while the condition number of the original system is O(m 2) Here m is the number of interior gridpoints in each direction. Such condition number produces a linear convergence rale.展开更多
Accurately approximating higher order derivatives is an inherently difficult problem. It is shown that a random variable shape parameter strategy can improve the accuracy of approximating higher order derivatives with...Accurately approximating higher order derivatives is an inherently difficult problem. It is shown that a random variable shape parameter strategy can improve the accuracy of approximating higher order derivatives with Radial Basis Function methods. The method is used to solve fourth order boundary value problems. The use and location of ghost points are examined in order to enforce the extra boundary conditions that are necessary to make a fourth-order problem well posed. The use of ghost points versus solving an overdetermined linear system via least squares is studied. For a general fourth-order boundary value problem, the recommended approach is to either use one of two novel sets of ghost centers introduced here or else to use a least squares approach. When using either ghost centers or least squares, the random variable shape parameter strategy results in significantly better accuracy than when a constant shape parameter is used.展开更多
In this paper a singular perturbation of boundary value problem for elliptic partial differential equations of higher order is considered by using the differential inequalities. The uniformly valid asymptotic expansio...In this paper a singular perturbation of boundary value problem for elliptic partial differential equations of higher order is considered by using the differential inequalities. The uniformly valid asymptotic expansion in entire region is obtained.展开更多
Recent years have witnessed growing interests in solving partial differential equations by deep neural networks,especially in the high-dimensional case.Unlike classical numerical methods,such as finite difference meth...Recent years have witnessed growing interests in solving partial differential equations by deep neural networks,especially in the high-dimensional case.Unlike classical numerical methods,such as finite difference method and finite element method,the enforcement of boundary conditions in deep neural networks is highly nontrivial.One general strategy is to use the penalty method.In the work,we conduct a comparison study for elliptic problems with four different boundary conditions,i.e.,Dirichlet,Neumann,Robin,and periodic boundary conditions,using two representative methods:deep Galerkin method and deep Ritz method.In the former,the PDE residual is minimized in the least-squares sense while the corresponding variational problem is minimized in the latter.Therefore,it is reasonably expected that deep Galerkin method works better for smooth solutions while deep Ritz method works better for low-regularity solutions.However,by a number of examples,we observe that deep Ritz method can outperform deep Galerkin method with a clear dependence of dimensionality even for smooth solutions and deep Galerkin method can also outperform deep Ritz method for low-regularity solutions.Besides,in some cases,when the boundary condition can be implemented in an exact manner,we find that such a strategy not only provides a better approximate solution but also facilitates the training process.展开更多
A boundary integral method with radial basis function approximation is proposed for numerically solving an important class of boundary value problems governed by a system of thermoelastostatic equations with variable ...A boundary integral method with radial basis function approximation is proposed for numerically solving an important class of boundary value problems governed by a system of thermoelastostatic equations with variable coe?cients. The equations describe the thermoelastic behaviors of nonhomogeneous anisotropic materials with properties that vary smoothly from point to point in space. No restriction is imposed on the spatial variations of the thermoelastic coe?cients as long as all the requirements of the laws of physics are satis?ed. To check the validity and accuracy of the proposed numerical method, some speci?c test problems with known solutions are solved.展开更多
The differential quadrature method based on Fourier expansion basis is applied in this work to solve coupled viscous Burgers’ equation with appropriate initial and boundary conditions. In the first step for the given...The differential quadrature method based on Fourier expansion basis is applied in this work to solve coupled viscous Burgers’ equation with appropriate initial and boundary conditions. In the first step for the given problem we have discretized the interval and replaced the differential equation by the Differential quadrature method based on Fourier expansion basis to obtain a system of ordinary differential equation (ODE) then we implement the numerical scheme by computer programing and perform numerical solution. Finally the validation of the present scheme is demonstrated by numerical example and compared with some existing numerical methods in literature. The method is analyzed for stability and convergence. It is found that the proposed numerical scheme produces a good result as compared to other researcher’s result and even generates a value at the nodes or mesh points that the results have not seen yet.展开更多
基金the National Natural Science Foundation of China(Nos.11671282 and 12171339)。
文摘The leaderless and leader-following finite-time consensus problems for multiagent systems(MASs)described by first-order linear hyperbolic partial differential equations(PDEs)are studied.The Lyapunov theorem and the unique solvability result for the first-order linear hyperbolic PDE are used to obtain some sufficient conditions for ensuring the finite-time consensus of the leaderless and leader-following MASs driven by first-order linear hyperbolic PDEs.Finally,two numerical examples are provided to verify the effectiveness of the proposed methods.
基金This work is supported in part by NNSF of China(10571126)and in part by Program for New Century Excellent Talents in University.
文摘Sufficient conditions are obtained for the oscillation of solutions of the systems of quasilinear hyperbolic differential equation with deviating arguments under nonlinear boundary condition.
文摘In this paper, we study a boundary value problem of nonlinear fractional dif- ferential equations of order q (1 〈 q 〈 2) with non-separated integral boundary conditions. Some new existence and uniqueness results are obtained by using some standard fixed point theorems and Leray-Schauder degree theory. Some illustrative examples are also presented. We extend previous results even in the integer case q = 2.
文摘In this paper, we prove an important existence and uniqueness theorem for a fractional order Fredholm – Volterra integro-differential equation with non-local and global boundary conditions by converting it to the corresponding well known Fredholm integral equation of second kind. The considered in this paper has been solved already numerically in [1].
文摘In this paper, we use the concentration-compactness principle together with the Mountain Pass Lemma to get the existence of nontrivial solutions and the existence of infinitely many solutions of the problem need not be compact operators from E to R~1.
基金Research supported by the National Natural Science Foundation of China(10471075)the Natural Science Foun-dation of Shandong Province of China(Y2006A04)
文摘By using the upper and lower solutions method and fixed point theory,we investigate a class of fourth-order singular differential equations with the Sturm-Liouville Boundary conditions.Some sufficient conditions are obtained for the existence of C2[0,1] positive solutions and C3[0,1] positive solutions.
文摘This paper investigates some known difference schemes for the numerical solution to parabolic differential equation with derivative boundary conditions by the fictitious domain method.The stability and convergence in L ∞ are proven.
基金This work is supported by the National Fujian Province Nature Science Research Funds
文摘In this paper, we consider a singular perturbation elliptic-parabolic partial differential equation for periodic boundary value problem, and construct a difference scheme. Using the method of decomposing the singular term from its solution and combining an asymptotic expansion of the equation, we prove that the scheme constructed by this paper converges uniformly to the solution of its original problem with O(r+h2).
文摘In this paper we study the forced oscillations of boundary value problems of a class of higher order functional partial differential equations.The principal tool is an everaging techniqe which enables one to establish oscillation in terms of related functional differential inequallities.
基金This research was supported by Fujian Science Foundation.
文摘In this paper we study the singular perturbation of boundary value problems with perturbations both in the operator and in the interval ends. So as to prove the existence and uniqueness of solution of perturbed problem, to establish the asymptotic expression involving three parameters. Thus, the iterative equation of finding the asymptotic solution is derived and the estimation of the remainder term is given out. We extend results of [l]-[5].
文摘New form of necessary conditions for optimality (NCO) is considered. They can be useful for design the direct infinite- dimensional optimization algorithms for systems described by partial differential equations (PDE). Appropriate algo-rithms for unconstrained minimizing a functional are considered and tested. To construct the algorithms, new form of NCO is used. Such approach demonstrates fast uniform convergence at optimal solution in infinite-dimensional space.
文摘In this paper, we study existence and uniqueness of solutions to nonlinear three point boundary value problems for fractional differential equation of the type c D δ 0+ u(t) = f (t, u(t), c D σ 0+ u(t)), t ∈ [0, T ], u(0) = αu(η), u(T ) = βu(η), where 1 〈 δ 〈 2, 0 〈 σ 〈 1, α, β∈ R, η∈ (0, T ), αη(1 -β) + (1-α)(T βη) = 0 and c D δ 0+ , c D σ 0+ are the Caputo fractional derivatives. We use Schauder fixed point theorem and contraction mapping principle to obtain existence and uniqueness results. Examples are also included to show the applicability of our results.
基金The University NSF (KJ2017A442,KJ2018A0452) of Anhui Provincial Education Departmentthe Foundation (2016XJGG13,2019XJZY02,2019XJSN03) of Suzhou University
文摘In this paper, we study a class of singular fractional differential system with Riemann-Stieltjes integral boundary condition by constructing a new cone and using Leggett-Williams fixed point theorem. The existence of multiple positive solutions is obtained. An example is presented to illustrate our main results.
文摘In the poper, the method of separating singularity is applied to study the uniformly difference scheme of a singular perturbation problem for a semilinear ordinary differential equation with mixed boundary value condition. The uniform convergence on small parameter ε of order one for an IVin type difference scheme constructed is proved. At the end of the paper, a numerical example is given. The computing results coincide with the theoretical analysis.
文摘In this paper, we are concerned with the numerical solution of second-order partial differential equations. We analyse the use of the Sine Transform precondilioners for the solution of linear systems arising from the discretization of p.d.e. via the preconditioned conjugate gradient method. For the second-order partial differential equations with Dirichlel boundary conditions, we prove that the condition number of the preconditioned system is O(1) while the condition number of the original system is O(m 2) Here m is the number of interior gridpoints in each direction. Such condition number produces a linear convergence rale.
文摘Accurately approximating higher order derivatives is an inherently difficult problem. It is shown that a random variable shape parameter strategy can improve the accuracy of approximating higher order derivatives with Radial Basis Function methods. The method is used to solve fourth order boundary value problems. The use and location of ghost points are examined in order to enforce the extra boundary conditions that are necessary to make a fourth-order problem well posed. The use of ghost points versus solving an overdetermined linear system via least squares is studied. For a general fourth-order boundary value problem, the recommended approach is to either use one of two novel sets of ghost centers introduced here or else to use a least squares approach. When using either ghost centers or least squares, the random variable shape parameter strategy results in significantly better accuracy than when a constant shape parameter is used.
文摘In this paper a singular perturbation of boundary value problem for elliptic partial differential equations of higher order is considered by using the differential inequalities. The uniformly valid asymptotic expansion in entire region is obtained.
基金the grants NSFC 11971021National Key R&D Program of China(No.2018YF645B0204404)NSFC 11501399(R.Du)。
文摘Recent years have witnessed growing interests in solving partial differential equations by deep neural networks,especially in the high-dimensional case.Unlike classical numerical methods,such as finite difference method and finite element method,the enforcement of boundary conditions in deep neural networks is highly nontrivial.One general strategy is to use the penalty method.In the work,we conduct a comparison study for elliptic problems with four different boundary conditions,i.e.,Dirichlet,Neumann,Robin,and periodic boundary conditions,using two representative methods:deep Galerkin method and deep Ritz method.In the former,the PDE residual is minimized in the least-squares sense while the corresponding variational problem is minimized in the latter.Therefore,it is reasonably expected that deep Galerkin method works better for smooth solutions while deep Ritz method works better for low-regularity solutions.However,by a number of examples,we observe that deep Ritz method can outperform deep Galerkin method with a clear dependence of dimensionality even for smooth solutions and deep Galerkin method can also outperform deep Ritz method for low-regularity solutions.Besides,in some cases,when the boundary condition can be implemented in an exact manner,we find that such a strategy not only provides a better approximate solution but also facilitates the training process.
文摘A boundary integral method with radial basis function approximation is proposed for numerically solving an important class of boundary value problems governed by a system of thermoelastostatic equations with variable coe?cients. The equations describe the thermoelastic behaviors of nonhomogeneous anisotropic materials with properties that vary smoothly from point to point in space. No restriction is imposed on the spatial variations of the thermoelastic coe?cients as long as all the requirements of the laws of physics are satis?ed. To check the validity and accuracy of the proposed numerical method, some speci?c test problems with known solutions are solved.
文摘The differential quadrature method based on Fourier expansion basis is applied in this work to solve coupled viscous Burgers’ equation with appropriate initial and boundary conditions. In the first step for the given problem we have discretized the interval and replaced the differential equation by the Differential quadrature method based on Fourier expansion basis to obtain a system of ordinary differential equation (ODE) then we implement the numerical scheme by computer programing and perform numerical solution. Finally the validation of the present scheme is demonstrated by numerical example and compared with some existing numerical methods in literature. The method is analyzed for stability and convergence. It is found that the proposed numerical scheme produces a good result as compared to other researcher’s result and even generates a value at the nodes or mesh points that the results have not seen yet.