In this paper, a one-dimensional bipolar Euler-Poisson system (a hydrodynamic model) from semiconductors or plasmas with boundary effects is considered. This system takes the form of Euler-Poisson with an electric f...In this paper, a one-dimensional bipolar Euler-Poisson system (a hydrodynamic model) from semiconductors or plasmas with boundary effects is considered. This system takes the form of Euler-Poisson with an electric field and frictional damping added to the momentum equations. The large-time behavior of uniformly bounded weak solutions to the initial-boundary value problem for the one-dimensional bipolar Euler-Poisson system is firstly presented. Next, two particle densities and the corresponding current momenta are verified to satisfy the porous medium equation and the classical Darcy's law time asymp- totically. Finally, as a by-product, the quasineutral limit of the weak solutions to the initial-boundary value problem is investigated in the sense that the bounded L∞ entropy solution to the one-dimensional bipolar Euler-Poisson system converges to that of the cor- responding one-dimensional compressible Euler equations with damping exponentially fast as t → +∞. As far as we know, this is the first result about the asymptotic behavior and the quasineutral limit for the one-dimensional bipolar Euler-Poisson system with boundary effects and a vacuum.展开更多
The limit of vanishing Debye length (charge neutral limit) in a nonlinear bipolar drift-diffusion model for semiconductors without pn-junction (i.e. without a bipolar background charge) is studied. The quasineutral li...The limit of vanishing Debye length (charge neutral limit) in a nonlinear bipolar drift-diffusion model for semiconductors without pn-junction (i.e. without a bipolar background charge) is studied. The quasineutral limit (zero-Debye-length limit) is performed rigorously by using the weak compactness argument and the so-called entropy functional which yields appropriate uniform estimates.展开更多
基金supported by the National Natural Science Foundation of China(No.11171223)the Innovation Program of Shanghai Municipal Education Commission(No.13ZZ109)
文摘In this paper, a one-dimensional bipolar Euler-Poisson system (a hydrodynamic model) from semiconductors or plasmas with boundary effects is considered. This system takes the form of Euler-Poisson with an electric field and frictional damping added to the momentum equations. The large-time behavior of uniformly bounded weak solutions to the initial-boundary value problem for the one-dimensional bipolar Euler-Poisson system is firstly presented. Next, two particle densities and the corresponding current momenta are verified to satisfy the porous medium equation and the classical Darcy's law time asymp- totically. Finally, as a by-product, the quasineutral limit of the weak solutions to the initial-boundary value problem is investigated in the sense that the bounded L∞ entropy solution to the one-dimensional bipolar Euler-Poisson system converges to that of the cor- responding one-dimensional compressible Euler equations with damping exponentially fast as t → +∞. As far as we know, this is the first result about the asymptotic behavior and the quasineutral limit for the one-dimensional bipolar Euler-Poisson system with boundary effects and a vacuum.
基金This work was supported by the Austrian-Chinese Scientific-Technical Cooperation Agreement, the MST(Grant No. 1999075107) Innovation Funds of AMSS, CAS of China, the EU-funded TMR-Network Asymptotic Methods in Kinetic Theory (contract number ERB FMR
文摘The limit of vanishing Debye length (charge neutral limit) in a nonlinear bipolar drift-diffusion model for semiconductors without pn-junction (i.e. without a bipolar background charge) is studied. The quasineutral limit (zero-Debye-length limit) is performed rigorously by using the weak compactness argument and the so-called entropy functional which yields appropriate uniform estimates.