Let G be a group and (A, B) be a pair of multiplier Hopf algebras, where B is regular G-cograded. Let π be a crossing action of G on B, D^π=A^cop∝B=+p∈GDπ^p with Dπ^p=A^cop∝Bp, is the Drinfeld double of the ...Let G be a group and (A, B) be a pair of multiplier Hopf algebras, where B is regular G-cograded. Let π be a crossing action of G on B, D^π=A^cop∝B=+p∈GDπ^p with Dπ^p=A^cop∝Bp, is the Drinfeld double of the pair (A, B), and then the deformation D^π becomes a multiplier Hopf algebra. B×A can be considered as a subalgebra of M(D^π×D^π), the image of element b×a in B×A is (1∝b)×(a∝1) in M(D^π×D^π). Let W =∑αWα∈ M(B×A) be a π-canonical multiplier for the pair (A, B) with Wα∈M(Bα×A) for all α∈G. The image of W in M(D^π×D^π)is a π-quasitriangular structure over D^π.展开更多
In this paper,we show that if H is a finite dimensional Hopf algebra then H is quasitri-angular if and only if H is coquasi-triangular. As a consequentility ,we obtain a generalized result of Sauchenburg.
The construction of the biproduct of Hopf algebras, which consists of smash product and the dual notion of smash coproduct, was first formulated by Radford. In this paper we study the quasitriangular structures over b...The construction of the biproduct of Hopf algebras, which consists of smash product and the dual notion of smash coproduct, was first formulated by Radford. In this paper we study the quasitriangular structures over biproduct Hopf algebras B*H. We show the necessary and sufficient conditions for biproduct Hopf algebras to be quasitriangular. For the case when they are, we determine completely the unique formula of the quasitriangular structures. And so we find a way to construct solutions of the Yang-Baxter equation over biproduct Hopf algebras in the sense of (Majid, 1990).展开更多
A new quasitriangular Hopf superalgebra and its universal R matrix for the quantum Yang-Baxter equation is constructed by endowing a simple C superalgebra generated by two even elements, one odd element and a unit wit...A new quasitriangular Hopf superalgebra and its universal R matrix for the quantum Yang-Baxter equation is constructed by endowing a simple C superalgebra generated by two even elements, one odd element and a unit with a. noncocommutative Hopf superalgebra structure.展开更多
This paper introduces the concepts of cylinder coalgebras and cylinder coproducts for quasitriangular bialgebras, and points out that there exists an anti-coalgebra isomorphism (H,△^-)≌ (H,△^-), where (H, △^-...This paper introduces the concepts of cylinder coalgebras and cylinder coproducts for quasitriangular bialgebras, and points out that there exists an anti-coalgebra isomorphism (H,△^-)≌ (H,△^-), where (H, △^-) is the cylinder coproduct, and (H,△^-) is the braided coproduct given by Kass. For any finite dimensional Hopf algebra H, the Drinfel'd double (D(H),△^-D(H)) is proved to be the cylinder coproduct. Let (H, H, R) be copaired Hopf algebras. If R ∈ Z(H×H) with inverse R-1 and skew inverse R, then the twisted coalgebra (H^R)^R-1 is constructed via twice twists, whose comultiplication is exactly the cylinder coproduct. Moreover, for any generalized Long dimodule, some solutions for Yang-Baxter equations, four braid pairs and Long equations are constructed via cylinder twists.展开更多
Let A be a bialgebra, R ∈ A A be a strong “cocycle”. It will be shown that the monoidal category _Auhas a braided monoidal subcategory and several equivalent conditions for (A, R ) to be a quasitriangular bialgebra...Let A be a bialgebra, R ∈ A A be a strong “cocycle”. It will be shown that the monoidal category _Auhas a braided monoidal subcategory and several equivalent conditions for (A, R ) to be a quasitriangular bialgebra will be given. Furthermore, it will be shown that A contains a finite dimensional subbialgebra which is a quasitriangular Hopf algebra if R is a YB-operator.展开更多
It is shown that the dual bialgebra of any quasitriangular bialgebra is braided, and the dual bialgebra of some braided bialgebra is quasitriangular.Also it is proved that every nondegenerate finite dimensional braid...It is shown that the dual bialgebra of any quasitriangular bialgebra is braided, and the dual bialgebra of some braided bialgebra is quasitriangular.Also it is proved that every nondegenerate finite dimensional braided (dually, quasitriangular) bialgebra has an antipode.展开更多
In this paper, we construct a new example of Hopf group coalgebras by con- sidering Radford's biproduct Hopf algebra in the Turaev category. Furthermore, we find some sufficient and necessary conditions for such Radf...In this paper, we construct a new example of Hopf group coalgebras by con- sidering Radford's biproduct Hopf algebra in the Turaev category. Furthermore, we find some sufficient and necessary conditions for such Radford's biproduct Hopf algebra to admit quasitriangulax structures in the sense of Turaev group coalgebras.展开更多
Let G be a discrete group with a neutral element and H be a quasitriangular Hopf G-coalgebra over a field k. Then the relationship between G-grouplike elements and ribbon elements of H is considered. First, a list of ...Let G be a discrete group with a neutral element and H be a quasitriangular Hopf G-coalgebra over a field k. Then the relationship between G-grouplike elements and ribbon elements of H is considered. First, a list of useful properties of a quasitriangular Hopf G-coalgebra and its Drinfeld elements are proved. Secondly, motivated by the relationship between the grouplike and ribbon elements of a quasitriangular Hopf algebra, a special kind of G-grouplike elements of H is defined. Finally, using the Drinfeld elements, a one-to-one correspondence between the special G-grouplike elements defined above and ribbon elements is obtained.展开更多
基金Specialized Research Fund for the Doctoral Program of Higher Education(No20060286006)the National Natural Science Foundation of China(No10871042)
文摘Let G be a group and (A, B) be a pair of multiplier Hopf algebras, where B is regular G-cograded. Let π be a crossing action of G on B, D^π=A^cop∝B=+p∈GDπ^p with Dπ^p=A^cop∝Bp, is the Drinfeld double of the pair (A, B), and then the deformation D^π becomes a multiplier Hopf algebra. B×A can be considered as a subalgebra of M(D^π×D^π), the image of element b×a in B×A is (1∝b)×(a∝1) in M(D^π×D^π). Let W =∑αWα∈ M(B×A) be a π-canonical multiplier for the pair (A, B) with Wα∈M(Bα×A) for all α∈G. The image of W in M(D^π×D^π)is a π-quasitriangular structure over D^π.
基金Partially supported by the National Natural Science Foundation of China.
文摘In this paper,we show that if H is a finite dimensional Hopf algebra then H is quasitri-angular if and only if H is coquasi-triangular. As a consequentility ,we obtain a generalized result of Sauchenburg.
文摘The construction of the biproduct of Hopf algebras, which consists of smash product and the dual notion of smash coproduct, was first formulated by Radford. In this paper we study the quasitriangular structures over biproduct Hopf algebras B*H. We show the necessary and sufficient conditions for biproduct Hopf algebras to be quasitriangular. For the case when they are, we determine completely the unique formula of the quasitriangular structures. And so we find a way to construct solutions of the Yang-Baxter equation over biproduct Hopf algebras in the sense of (Majid, 1990).
文摘A new quasitriangular Hopf superalgebra and its universal R matrix for the quantum Yang-Baxter equation is constructed by endowing a simple C superalgebra generated by two even elements, one odd element and a unit with a. noncocommutative Hopf superalgebra structure.
基金the National Natural Science Foundation of China(10571153),and Postdoctoral Science Foundation of China(2005037713)
文摘This paper introduces the concepts of cylinder coalgebras and cylinder coproducts for quasitriangular bialgebras, and points out that there exists an anti-coalgebra isomorphism (H,△^-)≌ (H,△^-), where (H, △^-) is the cylinder coproduct, and (H,△^-) is the braided coproduct given by Kass. For any finite dimensional Hopf algebra H, the Drinfel'd double (D(H),△^-D(H)) is proved to be the cylinder coproduct. Let (H, H, R) be copaired Hopf algebras. If R ∈ Z(H×H) with inverse R-1 and skew inverse R, then the twisted coalgebra (H^R)^R-1 is constructed via twice twists, whose comultiplication is exactly the cylinder coproduct. Moreover, for any generalized Long dimodule, some solutions for Yang-Baxter equations, four braid pairs and Long equations are constructed via cylinder twists.
文摘Let A be a bialgebra, R ∈ A A be a strong “cocycle”. It will be shown that the monoidal category _Auhas a braided monoidal subcategory and several equivalent conditions for (A, R ) to be a quasitriangular bialgebra will be given. Furthermore, it will be shown that A contains a finite dimensional subbialgebra which is a quasitriangular Hopf algebra if R is a YB-operator.
文摘It is shown that the dual bialgebra of any quasitriangular bialgebra is braided, and the dual bialgebra of some braided bialgebra is quasitriangular.Also it is proved that every nondegenerate finite dimensional braided (dually, quasitriangular) bialgebra has an antipode.
文摘In this paper, we construct a new example of Hopf group coalgebras by con- sidering Radford's biproduct Hopf algebra in the Turaev category. Furthermore, we find some sufficient and necessary conditions for such Radford's biproduct Hopf algebra to admit quasitriangulax structures in the sense of Turaev group coalgebras.
基金The National Natural Science Foundation of China(No.11371088)the Natural Science Foundation of Jiangsu Province(No.BK2012736)the Fundamental Research Funds for the Central Universities(No.KYZZ0060)
文摘Let G be a discrete group with a neutral element and H be a quasitriangular Hopf G-coalgebra over a field k. Then the relationship between G-grouplike elements and ribbon elements of H is considered. First, a list of useful properties of a quasitriangular Hopf G-coalgebra and its Drinfeld elements are proved. Secondly, motivated by the relationship between the grouplike and ribbon elements of a quasitriangular Hopf algebra, a special kind of G-grouplike elements of H is defined. Finally, using the Drinfeld elements, a one-to-one correspondence between the special G-grouplike elements defined above and ribbon elements is obtained.