期刊文献+
共找到33篇文章
< 1 2 >
每页显示 20 50 100
四元数Lyapunov方程的酉结构解及最佳逼近
1
作者 黄敬频 刘广梅 《重庆理工大学学报(自然科学)》 北大核心 2023年第8期348-354,共7页
针对四元数Lyapunov方程AX+XA*=C,在A、C为正规矩阵条件下,利用四元数矩阵的Frobenius范数酉乘积不变性和矩阵的右特征值分解,得到了该方程存在酉结构解的充分必要条件及其通解表达式。同时对预先给定的酉矩阵M,应用四元数矩阵的迹不等... 针对四元数Lyapunov方程AX+XA*=C,在A、C为正规矩阵条件下,利用四元数矩阵的Frobenius范数酉乘积不变性和矩阵的右特征值分解,得到了该方程存在酉结构解的充分必要条件及其通解表达式。同时对预先给定的酉矩阵M,应用四元数矩阵的迹不等式和矩阵的分块方法,在该方程的酉结构解集中得到与M的最佳逼近解。最后给出求解步骤,通过数值算例和四元数矩阵的复表示运算,检验了所得理论结果的正确性及所给方法的可行性。 展开更多
关键词 四元数Lyapunov方程 右特征值分解 酉矩阵 最佳逼近
下载PDF
四元数自共轭矩阵的几个不等式 被引量:2
2
作者 杨忠鹏 谭思文 《东北师大学报(自然科学版)》 CAS CSCD 1993年第1期23-29,共7页
设SC_n(Q)表示所有n×n的四元数自共轭矩阵的集合。当A∈SC_n(Q)时,λ_s(A)为A的特征值且满足λ_1(A)≥λ_2(A)≥…≥λ_n(A)。本文证明了 1)如果A∈SC_n(Q), P∈Q^(n×n) ,则 sum from s=1 to k(λ_(n-s-1)(PAP^n))≤sum from ... 设SC_n(Q)表示所有n×n的四元数自共轭矩阵的集合。当A∈SC_n(Q)时,λ_s(A)为A的特征值且满足λ_1(A)≥λ_2(A)≥…≥λ_n(A)。本文证明了 1)如果A∈SC_n(Q), P∈Q^(n×n) ,则 sum from s=1 to k(λ_(n-s-1)(PAP^n))≤sum from s=1 to k(λ_s(A)λ_s(PP^n)), k=1,2,...,n; sum from s=1 to k(λ_(n-s+1)(A)λ_s(PP^n))≤sum from s=1 to k(λ_s(PAP^n)), 2) 如果A,B,C∈SC_n(Q)且B=C-A, 则sum from s=1 to k(λ_s^2(B))≥sum from s=1 to k ([λ_s(C)-λ_s(A)]~2). 展开更多
关键词 四元数 自共轭矩阵 不等式
下载PDF
四元数体上方阵的标准形与矩阵方程AX+XB=D 被引量:8
3
作者 黄礼平 《新疆大学学报(自然科学版)》 CAS 1994年第1期35-38,59,共5页
本文简明地证明了任一个四元数方阵相似于一个唯一的Jordan标准形,得到关于四元数矩阵方程AX—XB=D的可解性的两个判别准则,并推广W.E.Roth定理到四元数体.
关键词 JORDAN标准形 四元数 矩阵方程
下载PDF
四元数体上一类矩阵方程解的数值方法 被引量:3
4
作者 邓勇 黄敬频 《纯粹数学与应用数学》 CSCD 2010年第5期705-709,共5页
建立了求解四元数体上严格对角占优矩阵方程AX=B的QJ和QSOR迭代方法,并利用四元数矩阵的右特征值最大模刻画出迭代的收敛性,给出参数的取值范围;最后运用四元数矩阵的复表示运算保结构的特性,把这两种迭代等价地转化到复数域上,从而实... 建立了求解四元数体上严格对角占优矩阵方程AX=B的QJ和QSOR迭代方法,并利用四元数矩阵的右特征值最大模刻画出迭代的收敛性,给出参数的取值范围;最后运用四元数矩阵的复表示运算保结构的特性,把这两种迭代等价地转化到复数域上,从而实现了该系统的数值求解. 展开更多
关键词 四元数矩阵 严格对角占优 QJ和QSOR迭代 右特征值最大模
下载PDF
四元数体上的Schur不等式及改进 被引量:4
5
作者 杨忠鹏 《新疆大学学报(自然科学版)》 CAS 1995年第3期27-32,共6页
本文证明了四元数矩阵A的右特征值的实部、虚部的模和右特征值的模在四元数的相似之下是唯一确定的,由此在四元数体上推广和改进了Schur不等式.
关键词 右特征值 SCHUR不等式 四元素体 矩阵 复矩阵
下载PDF
四元数矩阵的Lwner偏序 被引量:3
6
作者 庄瓦金 《数学物理学报(A辑)》 CSCD 北大核心 2004年第5期583-588,共6页
对于 A,B∈ H( n,≥ ) ,该文给出 Lowner偏序下 A≤ L B的五种刻画和 A2 ≤ L B2 的两种刻画 ;并将 A,B∈C( n,* )时 ,A≤ L B的 Liski定理推广到四元数除环上 .
关键词 Lowner偏序 半正定自共轭四元数矩阵 自共轭四元数矩阵 四元数矩阵的平方 右特征值
下载PDF
四元数矩阵的右特征值的实部估计 被引量:1
7
作者 杨忠鹏 《数学杂志》 CSCD 北大核心 1995年第2期159-163,共5页
本文给出了关于四元数矩阵的右特征值的实部估计的一些不等式,这些不等式推广、改进了屠伯埙教授,PabloTarazaga,H.Wolkowicz和G.P.H.Styan的相应结果.
关键词 四元数矩阵 左特征值 矩阵 不等式
下载PDF
四元数矩阵的亚正定性 被引量:2
8
作者 李文亮 《苏州科技学院学报(自然科学版)》 CAS 2005年第2期33-38,共6页
给出了四元数矩阵的和、乘积、直积与圈积为亚正定矩阵的充要条件。
关键词 四元数体 正定矩阵 亚正定矩阵 广义特征值
下载PDF
矩阵右半张量积的Schur补的奇异值估计
9
作者 王慧敏 赵建立 于金倩 《淮海工学院学报(自然科学版)》 CAS 2009年第3期1-4,共4页
对矩阵AB的奇异值,特别是最小奇异值的下界估计,是矩阵分析中的重要课题.其有很重要的理论和实际应用价值.主要研究了矩阵右半张量积特征值与(Schur补的)奇异值上(下)界估计,给出了一些Hermite矩阵右半张量积的特征值与奇异值的不等式,... 对矩阵AB的奇异值,特别是最小奇异值的下界估计,是矩阵分析中的重要课题.其有很重要的理论和实际应用价值.主要研究了矩阵右半张量积特征值与(Schur补的)奇异值上(下)界估计,给出了一些Hermite矩阵右半张量积的特征值与奇异值的不等式,并且利用分块矩阵的变换技巧,得到了复杂矩阵右半张量积的Schur补的奇异值估计,改进和推广了一些现有不等式,同时进一步丰富了半张量积的理论知识. 展开更多
关键词 矩阵右半张量积 HERMITE矩阵 特征值 奇异值 SCHUR补
下载PDF
四元数矩阵的右特征值的虚部的估计
10
作者 杨忠鹏 《数学研究》 CSCD 1997年第2期205-209,共5页
指出四元数矩阵A的右特征的虚部的模值是唯一确定的,得到了一些关于A的右特征值的虚部模的估计,推广改进了屠伯埙教授的相应结果.
关键词 虚部 右特征值 四元数矩阵 估计 唯一 推广 教授 改进
下载PDF
一类广义对称矩阵的左右逆特征值问题及其最佳逼近
11
作者 代丽芳 梁茂林 《天水师范学院学报》 2017年第2期10-12,共3页
基于正交投影变换,给出了广义投影对称矩阵的定义,并讨论了其结构特性.在此基础上,考虑了此类广义对称矩阵的左右逆特征值问题的可解性条件,并得到其通解表达式.同时,对任意给定矩阵得到了相应最佳逼近问题的唯一解.
关键词 正交投影 广义投影对称矩阵 左右逆特征值问题 最佳逼近
下载PDF
关于四元数矩阵之迹的注记
12
作者 曹文胜 《湘潭矿业学院学报》 2002年第3期91-93,共3页
通过应用四元数矩阵的复表示理论和复数域上矩阵与迹的性质,得到了四元数体上矩阵AB与BA以及矩阵A与其相似矩阵迹相等的充要条件,并讨论了矩阵A与其右特征值之间的关系,并举例指出A与A的相似矩阵与A的右特征值不存在的一般关系.参9.
关键词 四元数 矩阵 右特征值 相似矩阵
下载PDF
关于四元数体上Schur不等式的注记
13
作者 杨忠鹏 《烟台师范学院学报(自然科学版)》 1997年第3期165-170,共6页
修正、改进并推广了冯慈璜关于四元数体上Schur不等式的一些结果.
关键词 SCHUR不等式 矩阵 特征值 四元数体
下载PDF
正交矩阵的左右逆特征值问题
14
作者 陈惠汝 刘红超 《喀什师范学院学报》 2009年第6期18-19,共2页
给出了正交矩阵的左右逆特征值,并进行了相关讨论.
关键词 正交矩阵 左右逆特征值
下载PDF
目共轭四元数矩阵积与Hadamard积的特征值的一些不等式
15
作者 杨忠鹏 《烟台师范学院学报(自然科学版)》 1996年第1期15-19,共5页
给出了一些四元数自共轭矩阵积与Hadamard积的不等式.由此表明在很多情况下四元数自共轭矩阵积与Hadamard积的性质是相似的.
关键词 矩阵积 四元数 自共轭矩阵 特征值 阿达玛积
下载PDF
对称次反对称矩阵左右特征值反问题解存在的条件 被引量:2
16
作者 洪专 田英 +1 位作者 尤传华 朱雅敏 《甘肃科学学报》 2005年第3期9-12,共4页
讨论了对称次反对称矩阵左右特征值反问题解存在的充分必要条件,给出了解的具体表达式,对于给定的矩阵,给出了存在最佳逼近解的充要条件以及最佳逼近解.
关键词 对称次反对称矩阵 左右特征值 反问题
下载PDF
四元数实表示的代数应用 被引量:6
17
作者 连德忠 许陆文 《南京师大学报(自然科学版)》 CAS CSCD 2004年第4期19-24,共6页
在四元数和四元数向量、矩阵空间上引入并交替使用三种不同的实数表示方式 ,将四元数体上的李雅普诺夫矩阵方程和二次型转换为实数域上的等价方程组和等价二次型 ,并在此基础上把四元数自共轭矩阵特征值、四元数向量和矩阵的常用范数、... 在四元数和四元数向量、矩阵空间上引入并交替使用三种不同的实数表示方式 ,将四元数体上的李雅普诺夫矩阵方程和二次型转换为实数域上的等价方程组和等价二次型 ,并在此基础上把四元数自共轭矩阵特征值、四元数向量和矩阵的常用范数、四元数矩阵的数值半径等运算问题一律转换为实数域上的等价运算问题 . 展开更多
关键词 四元数 实表示 李雅普诺夫矩阵方程 二次型 右特征值 范数 数值半径
下载PDF
四元数矩阵的新特征值定位 被引量:1
18
作者 尹彩霞 李朝迁 《纯粹数学与应用数学》 2019年第2期201-207,共7页
针对四元数矩阵的特征值定位问题,得到一类新的左特征值定位集与右特征值定位集,改进了已有结果,并通过例子说明结果的有效性.
关键词 四元数矩阵 左特征值 右特征值 定位
下载PDF
四元数矩阵谱半径的估计 被引量:1
19
作者 武传东 《盐城工学院学报(自然科学版)》 CAS 2008年第1期13-15,共3页
给出了四元数矩阵谱半径的概念,定义了四元数矩阵的范数,并在谱半径概念的基础上,讨论了谱半径的估计,得到一系列重要结果。
关键词 四元数矩阵 右特征值 谱半径 矩阵范数
下载PDF
四元数矩阵右特征值的范围估计
20
作者 韩俊佳 畅大为 叶绒绒 《纺织高校基础科学学报》 CAS 2016年第4期-,共5页
讨论一个n×n阶四元数矩阵的所有右特征值的范围.对已有圆盘定理的条件加以改进,从而得到对于任意一个右特征值λ,只要存在η∈[λ],且有|λ-aii|=|η-aii|,则所有右特征值都在圆盘的并集内.另外还给出了四元数矩阵的所有右特征值... 讨论一个n×n阶四元数矩阵的所有右特征值的范围.对已有圆盘定理的条件加以改进,从而得到对于任意一个右特征值λ,只要存在η∈[λ],且有|λ-aii|=|η-aii|,则所有右特征值都在圆盘的并集内.另外还给出了四元数矩阵的所有右特征值或者所有主对角线元素都是实数情况下的结论.数值例子说明所得定理结论对一般情况仍成立. 展开更多
关键词 四元数 四元数矩阵 右特征值 特征向量
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部