In this paper,the quaternion matrix equations XF-AX=BY and XF-A=BY are investigated.For convenience,they were called generalized Sylvesterquaternion matrix equation and generalized Sylvester-j-conjugate quaternion mat...In this paper,the quaternion matrix equations XF-AX=BY and XF-A=BY are investigated.For convenience,they were called generalized Sylvesterquaternion matrix equation and generalized Sylvester-j-conjugate quaternion matrix equation,which include the Sylvester matrix equation and Lyapunov matrix equation as special cases.By applying of Kronecker map and complex representation of a quaternion matrix,the sufficient conditions to compute the solution can be given and the expressions of the explicit solutions to the above two quaternion matrix equations XF-AX=BY and XF-A=BY are also obtained.By the established expressions,it is easy to compute the solution of the quaternion matrix equation in the above two forms.In addition,two practical algorithms for these two quaternion matrix equations are give.One is complex representation matrix method and the other is a direct algorithm by the given expression.Furthermore,two illustrative examples are proposed to show the efficiency of the given method.展开更多
Solving quaternion kinematical differential equations(QKDE) is one of the most significant problems in the automation, navigation, aerospace and aeronautics literatures. Most existing approaches for this problem neith...Solving quaternion kinematical differential equations(QKDE) is one of the most significant problems in the automation, navigation, aerospace and aeronautics literatures. Most existing approaches for this problem neither preserve the norm of quaternions nor avoid errors accumulated in the sense of long term time. We present explicit symplectic geometric algorithms to deal with the quaternion kinematical differential equation by modelling its time-invariant and time-varying versions with Hamiltonian systems and adopting a three-step strategy. Firstly,a generalized Euler's formula and Cayley-Euler formula are proved and used to construct symplectic single-step transition operators via the centered implicit Euler scheme for autonomous Hamiltonian system. Secondly, the symplecticity, orthogonality and invertibility of the symplectic transition operators are proved rigorously. Finally, the explicit symplectic geometric algorithm for the time-varying quaternion kinematical differential equation, i.e., a non-autonomous and non-linear Hamiltonian system essentially, is designed with the theorems proved. Our novel algorithms have simple structures, linear time complexity and constant space complexity of computation. The correctness and efficiencies of the proposed algorithms are verified and validated via numerical simulations.展开更多
基金This project is granted financial support from NSFC (11071079)NSFC (10901056)+2 种基金Shanghai Science and Technology Commission Venus (11QA1402200)Ningbo Natural Science Foundation (2010A610097)the Fundamental Research Funds for the Central Universities and Zhejiang Natural Science Foundation (Y6110043)
文摘In this paper,the quaternion matrix equations XF-AX=BY and XF-A=BY are investigated.For convenience,they were called generalized Sylvesterquaternion matrix equation and generalized Sylvester-j-conjugate quaternion matrix equation,which include the Sylvester matrix equation and Lyapunov matrix equation as special cases.By applying of Kronecker map and complex representation of a quaternion matrix,the sufficient conditions to compute the solution can be given and the expressions of the explicit solutions to the above two quaternion matrix equations XF-AX=BY and XF-A=BY are also obtained.By the established expressions,it is easy to compute the solution of the quaternion matrix equation in the above two forms.In addition,two practical algorithms for these two quaternion matrix equations are give.One is complex representation matrix method and the other is a direct algorithm by the given expression.Furthermore,two illustrative examples are proposed to show the efficiency of the given method.
基金supported by the Fundamental Research Funds for the Central Universities of China(ZXH2012H005)supported in part by the National Natural Science Foundation of China(61201085,51402356,51506216)+1 种基金the Joint Fund of National Natural Science Foundation of China and Civil Aviation Administration of China(U1633101)the Joint Fund of the Natural Science Foundation of Tianjin(15JCQNJC42800)
文摘Solving quaternion kinematical differential equations(QKDE) is one of the most significant problems in the automation, navigation, aerospace and aeronautics literatures. Most existing approaches for this problem neither preserve the norm of quaternions nor avoid errors accumulated in the sense of long term time. We present explicit symplectic geometric algorithms to deal with the quaternion kinematical differential equation by modelling its time-invariant and time-varying versions with Hamiltonian systems and adopting a three-step strategy. Firstly,a generalized Euler's formula and Cayley-Euler formula are proved and used to construct symplectic single-step transition operators via the centered implicit Euler scheme for autonomous Hamiltonian system. Secondly, the symplecticity, orthogonality and invertibility of the symplectic transition operators are proved rigorously. Finally, the explicit symplectic geometric algorithm for the time-varying quaternion kinematical differential equation, i.e., a non-autonomous and non-linear Hamiltonian system essentially, is designed with the theorems proved. Our novel algorithms have simple structures, linear time complexity and constant space complexity of computation. The correctness and efficiencies of the proposed algorithms are verified and validated via numerical simulations.