The fixed-time synchronization and preassigned-time synchronization are investigated for a class of quaternion-valued neural networks with time-varying delays and discontinuous activation functions. Unlike previous ef...The fixed-time synchronization and preassigned-time synchronization are investigated for a class of quaternion-valued neural networks with time-varying delays and discontinuous activation functions. Unlike previous efforts that employed separation analysis and the real-valued control design, based on the quaternion-valued signum function and several related properties, a direct analytical method is proposed here and the quaternion-valued controllers are designed in order to discuss the fixed-time synchronization for the relevant quaternion-valued neural networks. In addition, the preassigned-time synchronization is investigated based on a quaternion-valued control design, where the synchronization time is preassigned and the control gains are finite. Compared with existing results, the direct method without separation developed in this article is beneficial in terms of simplifying theoretical analysis, and the proposed quaternion-valued control schemes are simpler and more effective than the traditional design, which adds four real-valued controllers. Finally, two numerical examples are given in order to support the theoretical results.展开更多
This paper is concerned with a delay-dependent state estimator for neutral-type neural networks with mixed timevarying delays and Markovian jumping parameters.The addressed neural networks have a finite number of mode...This paper is concerned with a delay-dependent state estimator for neutral-type neural networks with mixed timevarying delays and Markovian jumping parameters.The addressed neural networks have a finite number of modes,and the modes may jump from one to another according to a Markov process.By construction of a suitable Lyapunov-Krasovskii functional,a delay-dependent condition is developed to estimate the neuron states through available output measurements such that the estimation error system is globally asymptotically stable in a mean square.The criterion is formulated in terms of a set of linear matrix inequalities(LMIs),which can be checked efficiently by use of some standard numerical packages.展开更多
In this paper, we employ a fixed point theorem due to Krasnosel’skii to attain the existence of periodic solutions for neutral-type neural networks with delays on a periodic time scale. Some new sufficient conditions...In this paper, we employ a fixed point theorem due to Krasnosel’skii to attain the existence of periodic solutions for neutral-type neural networks with delays on a periodic time scale. Some new sufficient conditions are established to show that there exists a unique periodic solution by the contraction mapping principle.展开更多
In this paper, almost sure exponential stability of neutral delayed cellular neural networks which are in the noised environment is studied by decomposing the state space to sub-regions in view of the saturation linea...In this paper, almost sure exponential stability of neutral delayed cellular neural networks which are in the noised environment is studied by decomposing the state space to sub-regions in view of the saturation linearity of output functions of neurons of the cellular neural networks. Some algebraic criteria are obtained and easily verified. Some examples are given to illustrate the correctness of the results obtained.展开更多
The principle aim of this paper is to explore the existence of periodic solution of neural networks model with neutral delay. Sufficient and realistic conditions are obtained by means of an abstract continuous theorem...The principle aim of this paper is to explore the existence of periodic solution of neural networks model with neutral delay. Sufficient and realistic conditions are obtained by means of an abstract continuous theorem of k-set contractive operator and some analysis technique.展开更多
This paper presents the stability analysis for a class of neural networks with time varying delays that are represented by the Takagi^ugeno IT-S) model. The main results given here focus on the stability criteria usi...This paper presents the stability analysis for a class of neural networks with time varying delays that are represented by the Takagi^ugeno IT-S) model. The main results given here focus on the stability criteria using a new Lyapunov functional. New relaxed conditions and new linear matrix inequality-based designs are proposed that outperform the previous results found in the literature. Numerical examples are provided to show that the achieved conditions are less conservative than the existing ones in the literature.展开更多
Ship energy consumption and emission prediction are the main concern of the shipping industry for ship energy efficiency management and pollution gas emission control. And they are attracting more global attention and...Ship energy consumption and emission prediction are the main concern of the shipping industry for ship energy efficiency management and pollution gas emission control. And they are attracting more global attention and research interests because of the increase in global shipping trade volume. As the core of maritime transportation, a large volume of data is collected around ships such as voyage data. Due to the rapid development of computational power and the widely equipped AIS device on ships, the use of maritime big data for improving and monitoring ship’s energy efficiency is becoming possible. In this paper, a fuel consumption and carbon emission model using the artificial neural network (ANN) framework is proposed by using AIS, ship machinery, and weather data. The proposed work is a complete framework including data collection, data cleaning, data clustering and model-building methodology. To obtain the suitable parameters of the model, the number of neurons, data inputs and activate functions were tested on both AIS-based data and MRV-based data for comparison. The results show that the proposed method can provide a solid prediction of ship’s fuel consumption and carbon emissions under varying weather conditions.展开更多
In this study,we investigate the problem of multiple Mittag-Leffler stability analysis for fractional-order quaternion-valued neural networks(QVNNs)with impulses.Using the geometrical properties of activation function...In this study,we investigate the problem of multiple Mittag-Leffler stability analysis for fractional-order quaternion-valued neural networks(QVNNs)with impulses.Using the geometrical properties of activation functions and the Lipschitz condition,the existence of the equilibrium points is analyzed.In addition,the global Mittag-Leffler stability of multiple equilibrium points for the impulsive fractional-order QVNNs is investigated by employing the Lyapunov direct method.Finally,simulation is performed to illustrate the effectiveness and validity of the main results obtained.展开更多
This paper considers a class of quaternion-valued Hopfield neural networks with mixed time-varying delays and leakage delays.By utilizing the exponential dichotomy of linear differential equations,Banach’s fixed poin...This paper considers a class of quaternion-valued Hopfield neural networks with mixed time-varying delays and leakage delays.By utilizing the exponential dichotomy of linear differential equations,Banach’s fixed point theorem and differential inequality techniques,the authors obtain some sufficient conditions to ensure the existence and global exponential stability of almost automorphic solutions for this class of quaternion-valued neural networks.The results are completely new.Finally,the authors give an example to illustrate the feasibility of the results.展开更多
This paper is concerned with the global exponential stability analysis problem for a class of neutral bidi- rectional associative memory (BAM) neural networks with time-varying delays and stochastic disturbances. Th...This paper is concerned with the global exponential stability analysis problem for a class of neutral bidi- rectional associative memory (BAM) neural networks with time-varying delays and stochastic disturbances. The stochastic disturbances are described by state-dependent stochastic processes. By utilizing an appropriately constructed Lyapunov- Krasovskii functional (LKF) and some stochastic analysis approaches, novel delay-dependent conditions are established in terms of linear matrix inequalities (LMIs), which can be easily solved by existing convex optimization techniques. Further- more, the exponential convergence rate can be estimated based on the obtained results. An illustrate example is given to demonstrate the effectiveness of the proposed methods.展开更多
In this paper,a neutral Hopfield neural network with bidirectional connection is considered.In the first step,by choosing the connection weights as parameters bifurcation,the critical point at which a zero root of mul...In this paper,a neutral Hopfield neural network with bidirectional connection is considered.In the first step,by choosing the connection weights as parameters bifurcation,the critical point at which a zero root of multiplicity two occurs in the characteristic equation associated with the linearized system.In the second step,we studied the zeros of a third degree exponential polynomial in order to make sure that except the double zero root,all the other roots of the characteristic equation have real parts that are negative.Moreover,we find the critical values to guarantee the existence of the Bogdanov–Takens bifurcation.In the third step,the normal form is obtained and its dynamical behaviors are studied after the use of the reduction on the center manifold and the theory of the normal form.Furthermore,for the demonstration of our results,we have given a numerical example.展开更多
The models of competitive neural network(CNN)was in recent past proposed to describe the dynamics of cortical cognitive maps with unsupervised synaptic modifications,where there are two types of memories:Long-term mem...The models of competitive neural network(CNN)was in recent past proposed to describe the dynamics of cortical cognitive maps with unsupervised synaptic modifications,where there are two types of memories:Long-term memories(LTM)and short-term memories(STM),LTM presents unsupervised and slow synaptic modifications and STM characterize the fast neural activity.This paper is concerned with a class of neutral type CNN’s with mixed delay and D operator.By employing the appropriate differential inequality theory,some sufficient conditions are given to ensure that all solutions of the model converge exponentially to zero vector.Finally,an illustrative example is also given at the end of this paper to show the effectiveness of the proposed results.展开更多
基金supported by the National Natural Science Foundation of China (61963033, 61866036, 62163035)the Key Project of Natural Science Foundation of Xinjiang (2021D01D10)+1 种基金the Xinjiang Key Laboratory of Applied Mathematics (XJDX1401)the Special Project for Local Science and Technology Development Guided by the Central Government (ZYYD2022A05)。
文摘The fixed-time synchronization and preassigned-time synchronization are investigated for a class of quaternion-valued neural networks with time-varying delays and discontinuous activation functions. Unlike previous efforts that employed separation analysis and the real-valued control design, based on the quaternion-valued signum function and several related properties, a direct analytical method is proposed here and the quaternion-valued controllers are designed in order to discuss the fixed-time synchronization for the relevant quaternion-valued neural networks. In addition, the preassigned-time synchronization is investigated based on a quaternion-valued control design, where the synchronization time is preassigned and the control gains are finite. Compared with existing results, the direct method without separation developed in this article is beneficial in terms of simplifying theoretical analysis, and the proposed quaternion-valued control schemes are simpler and more effective than the traditional design, which adds four real-valued controllers. Finally, two numerical examples are given in order to support the theoretical results.
基金Project supported by the 2010 Yeungnam University Research Grant
文摘This paper is concerned with a delay-dependent state estimator for neutral-type neural networks with mixed timevarying delays and Markovian jumping parameters.The addressed neural networks have a finite number of modes,and the modes may jump from one to another according to a Markov process.By construction of a suitable Lyapunov-Krasovskii functional,a delay-dependent condition is developed to estimate the neuron states through available output measurements such that the estimation error system is globally asymptotically stable in a mean square.The criterion is formulated in terms of a set of linear matrix inequalities(LMIs),which can be checked efficiently by use of some standard numerical packages.
文摘In this paper, we employ a fixed point theorem due to Krasnosel’skii to attain the existence of periodic solutions for neutral-type neural networks with delays on a periodic time scale. Some new sufficient conditions are established to show that there exists a unique periodic solution by the contraction mapping principle.
基金the National Natural Science Foundation of China (No. 10571036)Tianjin Municipal Education Commission of China(No. 20070405)
文摘In this paper, almost sure exponential stability of neutral delayed cellular neural networks which are in the noised environment is studied by decomposing the state space to sub-regions in view of the saturation linearity of output functions of neurons of the cellular neural networks. Some algebraic criteria are obtained and easily verified. Some examples are given to illustrate the correctness of the results obtained.
文摘The principle aim of this paper is to explore the existence of periodic solution of neural networks model with neutral delay. Sufficient and realistic conditions are obtained by means of an abstract continuous theorem of k-set contractive operator and some analysis technique.
文摘This paper presents the stability analysis for a class of neural networks with time varying delays that are represented by the Takagi^ugeno IT-S) model. The main results given here focus on the stability criteria using a new Lyapunov functional. New relaxed conditions and new linear matrix inequality-based designs are proposed that outperform the previous results found in the literature. Numerical examples are provided to show that the achieved conditions are less conservative than the existing ones in the literature.
文摘Ship energy consumption and emission prediction are the main concern of the shipping industry for ship energy efficiency management and pollution gas emission control. And they are attracting more global attention and research interests because of the increase in global shipping trade volume. As the core of maritime transportation, a large volume of data is collected around ships such as voyage data. Due to the rapid development of computational power and the widely equipped AIS device on ships, the use of maritime big data for improving and monitoring ship’s energy efficiency is becoming possible. In this paper, a fuel consumption and carbon emission model using the artificial neural network (ANN) framework is proposed by using AIS, ship machinery, and weather data. The proposed work is a complete framework including data collection, data cleaning, data clustering and model-building methodology. To obtain the suitable parameters of the model, the number of neurons, data inputs and activate functions were tested on both AIS-based data and MRV-based data for comparison. The results show that the proposed method can provide a solid prediction of ship’s fuel consumption and carbon emissions under varying weather conditions.
文摘In this study,we investigate the problem of multiple Mittag-Leffler stability analysis for fractional-order quaternion-valued neural networks(QVNNs)with impulses.Using the geometrical properties of activation functions and the Lipschitz condition,the existence of the equilibrium points is analyzed.In addition,the global Mittag-Leffler stability of multiple equilibrium points for the impulsive fractional-order QVNNs is investigated by employing the Lyapunov direct method.Finally,simulation is performed to illustrate the effectiveness and validity of the main results obtained.
基金supported by the National Natural Sciences Foundation of People’s Republic of China under Grants Nos.11861072 and 11361072.
文摘This paper considers a class of quaternion-valued Hopfield neural networks with mixed time-varying delays and leakage delays.By utilizing the exponential dichotomy of linear differential equations,Banach’s fixed point theorem and differential inequality techniques,the authors obtain some sufficient conditions to ensure the existence and global exponential stability of almost automorphic solutions for this class of quaternion-valued neural networks.The results are completely new.Finally,the authors give an example to illustrate the feasibility of the results.
基金partly supported by the National Natural Science Foundation of China (No. 60974017)partly by the Specialized Research Fund for Doctoral Program of High Education, China (No. 200803370002)
文摘This paper is concerned with the global exponential stability analysis problem for a class of neutral bidi- rectional associative memory (BAM) neural networks with time-varying delays and stochastic disturbances. The stochastic disturbances are described by state-dependent stochastic processes. By utilizing an appropriately constructed Lyapunov- Krasovskii functional (LKF) and some stochastic analysis approaches, novel delay-dependent conditions are established in terms of linear matrix inequalities (LMIs), which can be easily solved by existing convex optimization techniques. Further- more, the exponential convergence rate can be estimated based on the obtained results. An illustrate example is given to demonstrate the effectiveness of the proposed methods.
文摘In this paper,a neutral Hopfield neural network with bidirectional connection is considered.In the first step,by choosing the connection weights as parameters bifurcation,the critical point at which a zero root of multiplicity two occurs in the characteristic equation associated with the linearized system.In the second step,we studied the zeros of a third degree exponential polynomial in order to make sure that except the double zero root,all the other roots of the characteristic equation have real parts that are negative.Moreover,we find the critical values to guarantee the existence of the Bogdanov–Takens bifurcation.In the third step,the normal form is obtained and its dynamical behaviors are studied after the use of the reduction on the center manifold and the theory of the normal form.Furthermore,for the demonstration of our results,we have given a numerical example.
文摘The models of competitive neural network(CNN)was in recent past proposed to describe the dynamics of cortical cognitive maps with unsupervised synaptic modifications,where there are two types of memories:Long-term memories(LTM)and short-term memories(STM),LTM presents unsupervised and slow synaptic modifications and STM characterize the fast neural activity.This paper is concerned with a class of neutral type CNN’s with mixed delay and D operator.By employing the appropriate differential inequality theory,some sufficient conditions are given to ensure that all solutions of the model converge exponentially to zero vector.Finally,an illustrative example is also given at the end of this paper to show the effectiveness of the proposed results.