In order to prolong the service life of the cooling zone of large scale coke dry quenching ovens,six kinds possible refractories for the cooling zone of large scale coke dry quenching ovens: SiC containing brick A,Si...In order to prolong the service life of the cooling zone of large scale coke dry quenching ovens,six kinds possible refractories for the cooling zone of large scale coke dry quenching ovens: SiC containing brick A,SiC containing brick B,mullite-andalusite brick,spinel containing brick,zirconia containing brick,corundum-mullite brick and grade B mullite brick,were analyzed in properties. It is found that the cooling zone lining adopting SiC containing bricks or mullite-andalusite bricks has much longer service life. Based on this,a new type of wear resistant brick was developed. The brick has a compressive strength of 135 MPa,a wear loss of 2. 10cm^3(only a quarter of that of the grade B mullite brick),and a higher bulk density than the grade B mullite brick. The application of the brick in a 140t·h^(-1)coke dry quenching oven showed that it performed better than the grade B mullite brick. The cooling zone adopting the new bricks has a lower coke discharging temperature,which is beneficial to the enhancement of heat recovery efficiency and steam power generation.展开更多
This study investigates the phase constitutions and transformations that occur in the mushy zone and in the adjacent phase fields of a directionally solidified Ti-44Al-8Nb-1Cr alloy via quenching technique.The results...This study investigates the phase constitutions and transformations that occur in the mushy zone and in the adjacent phase fields of a directionally solidified Ti-44Al-8Nb-1Cr alloy via quenching technique.The results indicate that the mushy zone consists of unmeltedβdendrites and interdendritic liquid,whose formation can be attributed to the difference in melting point aroused by local heterogeneity in solutecontent.Theβdendrite is composed of numerous subgrains with various orientations.During quenching,theβdendrite transforms into Widmanstättenαvia a precipitation reaction,owing to the decreasing cooling rate caused by heat transfer from the surrounding liquid.Additionally,after quenching,the interdendritic liquid is transformed intoγplates.Within the singleβphase field and the lower part of the mushy zone,a massive transformation ofβtoγoccurs.Conversely,in theβ+αphase field,bothβandαphases are retained to ambient temperature.During the heating process,the transformation ofα→βgives rise to the formation ofβvariants,which affects the orientation ofβdendrites in the mushy zone.The growth kinematics of theα→βtransformation was elucidated,revealing the preferential growth directions of111and112forβvariants.Furthermore,this study presents an illustration of the formation process of the mushy zone and the microstructural evolution during the heating and quenching process.展开更多
The effect of step-quenching on the microstructure of aluminum alloy 7055 after artificial aging was studied by hardness testing and transmission electron microscopy (TEM). Step-quenching leads to decomposition of sol...The effect of step-quenching on the microstructure of aluminum alloy 7055 after artificial aging was studied by hardness testing and transmission electron microscopy (TEM). Step-quenching leads to decomposition of solid solution and heterogeneous precipitation of equilibrium phase mainly on dispersoids and at grain boundaries; thus lower hardness after aging. Prolonging isothermal holding at 415 ℃ results in coarser and more spaced η phase particles at grain boundaries with wider precipitates free zone, and lower density of larger η′ hardening precipitates inside grains after aging. Isothermal holding at 355 ℃ results in heterogeneous precipitation of η phase both on dispersoids and at grain boundaries. Isothermal holding at 235 ℃ results in heterogeneous precipitation of η phase first, and then S phase. Precipitates free zones are created around these coarse η and S phase particles after aging. Prolonging isothermal holding at these two temperatures leads to fewer η′ hardening precipitates inside grains, larger and more spaced η phase particles at grain boundaries and wider grain boundary precipitates free zone after aging.展开更多
The microstructures of rapidly solidified (RS) Al-Fe-Ce-Ti and Al-Fe-V-Si alloys obtained by means of rotating blade quenching were studied with optical microscopy,transmission electron microscopy (TEM).The featureles...The microstructures of rapidly solidified (RS) Al-Fe-Ce-Ti and Al-Fe-V-Si alloys obtained by means of rotating blade quenching were studied with optical microscopy,transmission electron microscopy (TEM).The featureless zone observed in the two alloys reveals that the new technique offers a higher solidification rate than the inert-gas-atomized method.Under TEM observation the featureless zone presents virtually a micropartition or partitionless feature,and the solute contents in it are almost the same as the chemical composition of alloys.展开更多
The HAZ microstructure and performance of Quenching and Tempering mode temper bead welding and general welded joints which were made on SA508-3 steel of 60 mm thickness were compared in this article. The result shows ...The HAZ microstructure and performance of Quenching and Tempering mode temper bead welding and general welded joints which were made on SA508-3 steel of 60 mm thickness were compared in this article. The result shows that tempering sorbite which has excellent overall performance was obtained in both modes. The microstructure of Quenching and Tempering mode welded joints got more fine grain. Even though the hardness of tempering bead welded joints is higher than the general one,it still meets the standards which is lower than 350 HV. The impact absorbing energy of each district of tempering bead welded joints HAZ reached 170 J,which is equal to general one.展开更多
Using the Gleeble 3500 thermal-mechanical system to simulate thermal cycles with different peak temperatures, the hardness and microstructure in the heat-affected zones of two kinds of 100 kg class hot-rolled extra-hi...Using the Gleeble 3500 thermal-mechanical system to simulate thermal cycles with different peak temperatures, the hardness and microstructure in the heat-affected zones of two kinds of 100 kg class hot-rolled extra-high-strength steel were compared. When the peak temperature of the thermal cycle was 800℃ ,incomplete transformation occurred during quenching in both steels, and massive martensite and bainite grains were formed. The hardness was determined by the composition and distribution of the microstructure. The concentration of massive martensite was low, and hence the hardness was low,in steel #1. Conversely,the massive martensite content in steel #2 was high and uniformly distributed,resulting in a high hardness. These findings can provide a reference for improving the mechanical properties in the softened zone.展开更多
Conventional fusion arc welding of high-strength quenched and tempered steel can be improved through the use of non-conventional laser beam welding. This article presents the investigations of autogenous bead on plate...Conventional fusion arc welding of high-strength quenched and tempered steel can be improved through the use of non-conventional laser beam welding. This article presents the investigations of autogenous bead on plate and butt CO<sub>2</sub> Laser Welding (LW) of 7 mm thick high-strength quenched and tempered low alloy SM570 (JIS) steel plates. The influence of laser welding parameters, mainly welding speed, defocusing distance and shielding gas flow rate on the weld profile, i.e., weld zone penetration depth and width, microstructure and mechanical properties of welded joints was determined. All welded joints showed smooth and uniform weld beads free from superficial porosity and undercuts. The selected best welding conditions were a laser power of 5.0 kW, welding speed of 500 mm/min, argon gas shielding flow rate of 30 L/min and a defocusing distance of -0.5 mm. It was observed that these conditions gave complete penetration and minimized the width of the weld bead. The microstructure of the welded joints was evaluated by light optical microscopy. The weld metal (WM) and heat-affected zone (HAZ) near weld metal achieved maximum hardness (355 HV). The tensile fractured samples showed the ductile mode of failure and ultimate tensile strength of 580 MPa.展开更多
文摘In order to prolong the service life of the cooling zone of large scale coke dry quenching ovens,six kinds possible refractories for the cooling zone of large scale coke dry quenching ovens: SiC containing brick A,SiC containing brick B,mullite-andalusite brick,spinel containing brick,zirconia containing brick,corundum-mullite brick and grade B mullite brick,were analyzed in properties. It is found that the cooling zone lining adopting SiC containing bricks or mullite-andalusite bricks has much longer service life. Based on this,a new type of wear resistant brick was developed. The brick has a compressive strength of 135 MPa,a wear loss of 2. 10cm^3(only a quarter of that of the grade B mullite brick),and a higher bulk density than the grade B mullite brick. The application of the brick in a 140t·h^(-1)coke dry quenching oven showed that it performed better than the grade B mullite brick. The cooling zone adopting the new bricks has a lower coke discharging temperature,which is beneficial to the enhancement of heat recovery efficiency and steam power generation.
基金supported by the National Natural Science Foundation of China(No.51831001)the Funds for Creative Research Groups of China(No.51921001)+1 种基金the Beijing Natural Sci-ence Foundation(No.2222092)the National Science and Tech-nology Major Project(No.J2019-Ⅵ-0003-0116).
文摘This study investigates the phase constitutions and transformations that occur in the mushy zone and in the adjacent phase fields of a directionally solidified Ti-44Al-8Nb-1Cr alloy via quenching technique.The results indicate that the mushy zone consists of unmeltedβdendrites and interdendritic liquid,whose formation can be attributed to the difference in melting point aroused by local heterogeneity in solutecontent.Theβdendrite is composed of numerous subgrains with various orientations.During quenching,theβdendrite transforms into Widmanstättenαvia a precipitation reaction,owing to the decreasing cooling rate caused by heat transfer from the surrounding liquid.Additionally,after quenching,the interdendritic liquid is transformed intoγplates.Within the singleβphase field and the lower part of the mushy zone,a massive transformation ofβtoγoccurs.Conversely,in theβ+αphase field,bothβandαphases are retained to ambient temperature.During the heating process,the transformation ofα→βgives rise to the formation ofβvariants,which affects the orientation ofβdendrites in the mushy zone.The growth kinematics of theα→βtransformation was elucidated,revealing the preferential growth directions of111and112forβvariants.Furthermore,this study presents an illustration of the formation process of the mushy zone and the microstructural evolution during the heating and quenching process.
基金Project(2005CB623706) supported by the National Basic Research Program of China
文摘The effect of step-quenching on the microstructure of aluminum alloy 7055 after artificial aging was studied by hardness testing and transmission electron microscopy (TEM). Step-quenching leads to decomposition of solid solution and heterogeneous precipitation of equilibrium phase mainly on dispersoids and at grain boundaries; thus lower hardness after aging. Prolonging isothermal holding at 415 ℃ results in coarser and more spaced η phase particles at grain boundaries with wider precipitates free zone, and lower density of larger η′ hardening precipitates inside grains after aging. Isothermal holding at 355 ℃ results in heterogeneous precipitation of η phase both on dispersoids and at grain boundaries. Isothermal holding at 235 ℃ results in heterogeneous precipitation of η phase first, and then S phase. Precipitates free zones are created around these coarse η and S phase particles after aging. Prolonging isothermal holding at these two temperatures leads to fewer η′ hardening precipitates inside grains, larger and more spaced η phase particles at grain boundaries and wider grain boundary precipitates free zone after aging.
文摘The microstructures of rapidly solidified (RS) Al-Fe-Ce-Ti and Al-Fe-V-Si alloys obtained by means of rotating blade quenching were studied with optical microscopy,transmission electron microscopy (TEM).The featureless zone observed in the two alloys reveals that the new technique offers a higher solidification rate than the inert-gas-atomized method.Under TEM observation the featureless zone presents virtually a micropartition or partitionless feature,and the solute contents in it are almost the same as the chemical composition of alloys.
基金supported by the Key State Science and Technology Projects(Grant No.2011ZX04016-061 and No.2012ZX06004-001-001-005)
文摘The HAZ microstructure and performance of Quenching and Tempering mode temper bead welding and general welded joints which were made on SA508-3 steel of 60 mm thickness were compared in this article. The result shows that tempering sorbite which has excellent overall performance was obtained in both modes. The microstructure of Quenching and Tempering mode welded joints got more fine grain. Even though the hardness of tempering bead welded joints is higher than the general one,it still meets the standards which is lower than 350 HV. The impact absorbing energy of each district of tempering bead welded joints HAZ reached 170 J,which is equal to general one.
文摘Using the Gleeble 3500 thermal-mechanical system to simulate thermal cycles with different peak temperatures, the hardness and microstructure in the heat-affected zones of two kinds of 100 kg class hot-rolled extra-high-strength steel were compared. When the peak temperature of the thermal cycle was 800℃ ,incomplete transformation occurred during quenching in both steels, and massive martensite and bainite grains were formed. The hardness was determined by the composition and distribution of the microstructure. The concentration of massive martensite was low, and hence the hardness was low,in steel #1. Conversely,the massive martensite content in steel #2 was high and uniformly distributed,resulting in a high hardness. These findings can provide a reference for improving the mechanical properties in the softened zone.
文摘Conventional fusion arc welding of high-strength quenched and tempered steel can be improved through the use of non-conventional laser beam welding. This article presents the investigations of autogenous bead on plate and butt CO<sub>2</sub> Laser Welding (LW) of 7 mm thick high-strength quenched and tempered low alloy SM570 (JIS) steel plates. The influence of laser welding parameters, mainly welding speed, defocusing distance and shielding gas flow rate on the weld profile, i.e., weld zone penetration depth and width, microstructure and mechanical properties of welded joints was determined. All welded joints showed smooth and uniform weld beads free from superficial porosity and undercuts. The selected best welding conditions were a laser power of 5.0 kW, welding speed of 500 mm/min, argon gas shielding flow rate of 30 L/min and a defocusing distance of -0.5 mm. It was observed that these conditions gave complete penetration and minimized the width of the weld bead. The microstructure of the welded joints was evaluated by light optical microscopy. The weld metal (WM) and heat-affected zone (HAZ) near weld metal achieved maximum hardness (355 HV). The tensile fractured samples showed the ductile mode of failure and ultimate tensile strength of 580 MPa.