For a class of quintic systems, the first 16 critical point quantities are obtained by computer algebraic system Mathematica, and the necessary and sufficient conditions that there exists an exact integral in a neighb...For a class of quintic systems, the first 16 critical point quantities are obtained by computer algebraic system Mathematica, and the necessary and sufficient conditions that there exists an exact integral in a neighborhood of the origin are also given. The technique employed is essentially different from usual ones. The recursive formula for computation of critical point quantities is linear and then avoids complex integral operations. Some results show an interesting contrast with the related results on quadratic systems.展开更多
By combining a pair of linear springs we devise a nonlinear vibrator. For a one dimensional scenario the nonlinear force is composed of a polynomial of odd powers of position-dependent variable greater than or equal t...By combining a pair of linear springs we devise a nonlinear vibrator. For a one dimensional scenario the nonlinear force is composed of a polynomial of odd powers of position-dependent variable greater than or equal three. For a chosen initial condition without compromising the generality of the problem we analyze the problem considering only the leading cubic term. We solve the equation of motion analytically leading to The Jacobi Elliptic Function. To avoid the complexity of the latter, we propose a practical, intuitive-based and easy to use alternative semi-analytic method producing the same result. We demonstrate that our method is intuitive and practical vs. the plug-in Jacobi function. According to the proposed procedure, higher order terms such as quintic and beyond easily may be included in the analysis. We also extend the application of our method considering a system of a three-linear spring. Mathematica [1] is being used throughout the investigation and proven to be an indispensable computational tool.展开更多
Modern high speed machining (HSM) machine tools often operates at high speed and high feedrate with high ac- celerations,in order to deliver the rapid feed motion.This paper presents an interpolation algorithm to gene...Modern high speed machining (HSM) machine tools often operates at high speed and high feedrate with high ac- celerations,in order to deliver the rapid feed motion.This paper presents an interpolation algorithm to generate continuous quintic spline toolpaths,with a constant travel increment at each step,while the smoother accelerations and jerks of two-order curve are obtained.Then an approach for reducing the feedrate fluctuation in high speed spline interpolation is presented.The presented ap- proach has been validated to quickly,reliably and effective with the simulation.展开更多
This paper presents a method for creating modificable quartic and quintic curves with shape parameters. The curves can achieve C 2 even C 3 continuity and unify both interpolation and approximation to the control poin...This paper presents a method for creating modificable quartic and quintic curves with shape parameters. The curves can achieve C 2 even C 3 continuity and unify both interpolation and approximation to the control points without solving a system of equations or inserting additional control points. They have the local properties like the cubic B spline. Besides, the quintic curve would be able globally to tend the control polygon.展开更多
A semi-supervised vector machine is a relatively new learning method using both labeled and unlabeled data in classifi- cation. Since the objective function of the model for an unstrained semi-supervised vector machin...A semi-supervised vector machine is a relatively new learning method using both labeled and unlabeled data in classifi- cation. Since the objective function of the model for an unstrained semi-supervised vector machine is not smooth, many fast opti- mization algorithms cannot be applied to solve the model. In order to overcome the difficulty of dealing with non-smooth objective functions, new methods that can solve the semi-supervised vector machine with desired classification accuracy are in great demand. A quintic spline function with three-times differentiability at the ori- gin is constructed by a general three-moment method, which can be used to approximate the symmetric hinge loss function. The approximate accuracy of the quintic spiine function is estimated. Moreover, a quintic spline smooth semi-support vector machine is obtained and the convergence accuracy of the smooth model to the non-smooth one is analyzed. Three experiments are performed to test the efficiency of the model. The experimental results show that the new model outperforms other smooth models, in terms of classification performance. Furthermore, the new model is not sensitive to the increasing number of the labeled samples, which means that the new model is more efficient.展开更多
This paper deals with the solutions of time independent Schrodinger wave equation for a two-dimensional PT-symmetric coupled quintic potential in its most general form. Employing wavefunction ansatz method, general an...This paper deals with the solutions of time independent Schrodinger wave equation for a two-dimensional PT-symmetric coupled quintic potential in its most general form. Employing wavefunction ansatz method, general analytic expressions for eigenvalues and eigenfunctions for first four states are obtained. Solutions of a particular case are also presented.展开更多
The optical wave breaking (OWB) characteristics in terms of the pulse shape, spectrum, and frequency chirp, in the normal dispersion regime of an optical fiber with both the third-order dispersion (TOD) and quinti...The optical wave breaking (OWB) characteristics in terms of the pulse shape, spectrum, and frequency chirp, in the normal dispersion regime of an optical fiber with both the third-order dispersion (TOD) and quintic nonlinearity (QN) are numerically calculated. The results show that the TOD causes the asymmetry of the temporal- and spectral-domain, and the chirp characteristics. The OWB generally appears near the pulse center and at the trailing edge of the pulse, instead of at the two edges of the pulse symmetrically in the case of no TOD. With the increase of distance, the relation of OWB to the TOD near the pulse center increases quickly, leading to the generation of ultra-short pulse trains, while the OWB resulting from the case of no TOD at the trailing edge of the pulse disappears gradually. In addition, the positive (negative) QN enhances (weakens) the chirp amount and the fine structures, thereby inducing the OWB phenomena to appear earlier (later). Thus, the TOD and the positive (negative) QN are beneficial (detrimental) to the OWB and the generation of ultra-short pulse trains.展开更多
By using the extended hyperbolic function method, we have studied a quintic discrete nonlinear Schrodinger equation and obtained new exact localized solutions, including the discrete bright soliton solution, dark soli...By using the extended hyperbolic function method, we have studied a quintic discrete nonlinear Schrodinger equation and obtained new exact localized solutions, including the discrete bright soliton solution, dark soliton solution, bright and dark soliton solution, alternating phase bright soliton solution, alternating phase dark soliton solution, and alternating phase bright and dark soliton solution, if a special relation is bound on the coefficients of the equation.展开更多
A class of analytical solitary-wave solutions to the generalized nonautonomous cubic–quintic nonlinear Schrdinger equation with time-and space-modulated coefficients and potentials are constructed using the similarit...A class of analytical solitary-wave solutions to the generalized nonautonomous cubic–quintic nonlinear Schrdinger equation with time-and space-modulated coefficients and potentials are constructed using the similarity transformation technique. Constraints for the dispersion coefficient, the cubic and quintic nonlinearities, the external potential, and the gain (loss) coefficient are presented at the same time. Various shapes of analytical solitary-wave solutions which have important applications of physical interest are studied in detail, such as the solutions in Feshbach resonance management with harmonic potentials, Faraday-type waves in the optical lattice potentials, and localized solutions supported by the Gaussian-shaped nonlinearity. The stability analysis of the solutions is discussed numerically.展开更多
By making use of our generalization of Barrucand and Cohn’s theory of principal factorizations in pure cubic fields and their Galois closures with 3 possible types to pure quintic fields and their pure metacyclic nor...By making use of our generalization of Barrucand and Cohn’s theory of principal factorizations in pure cubic fields and their Galois closures with 3 possible types to pure quintic fields and their pure metacyclic normal fields with 13 possible types, we compile an extensive database with arithmetical invariants of the 900 pairwise non-isomorphic fields N having normalized radicands in the range 2≤D3. Our classification is based on the Galois cohomology of the unit group UN, viewed as a module over the automorphism group Gal(N/K) of N over the cyclotomic field K=Q(ξ5), by employing theorems of Hasse and Iwasawa on the Herbrand quotient of the unit norm index (Uk:NN/K(UN)) by the number #(PN/K/PK) of primitive ambiguous principal ideals, which can be interpreted as principal factors of the different DN/K. The precise structure of the F5-vector space of differential principal factors is expressed in terms of norm kernels and central orthogonal idempotents. A connection with integral representation theory is established via class number relations by Parry and Walter involving the index of subfield units (UN:U0).?The statistical distribution of the 13 principal factorization types and their refined splitting into similarity classes with representative prototypes is discussed thoroughly.展开更多
It is proved in this paper that Abel’s and Galois’s proofs that the quintic equations have no radical solutions are invalid. Due to Abel’s and Galois’s work about two hundred years ago, it was generally accepted t...It is proved in this paper that Abel’s and Galois’s proofs that the quintic equations have no radical solutions are invalid. Due to Abel’s and Galois’s work about two hundred years ago, it was generally accepted that general quintic equations had no radical solutions. However, Tang Jianer <i><span style="font-family:Verdana;font-size:12px;">et</span></i><i><span style="font-size:12px;font-family:Verdana;"> al</span><span style="font-size:12px;font-family:Verdana;">.</span></i><span style="font-size:10pt;font-family:;" "=""><span style="font-family:Verdana;font-size:12px;"> recently prove that there are radical solutions for some quintic equations with special forms. The theories of Abel and Galois cannot explain these results. On the other hand, Gauss </span><i><span style="font-family:Verdana;font-size:12px;">et</span></i></span><i><span style="font-size:12px;font-family:Verdana;"> al</span><span style="font-size:12px;font-family:Verdana;">.</span></i><span style="font-size:10pt;font-family:;" "=""><span style="font-family:Verdana;font-size:12px;"> proved the fundamental theorem of algebra. The theorem declared that there were </span><i><span style="font-family:Verdana;font-size:12px;">n</span></i><span style="font-family:Verdana;font-size:12px;"> solutions for the </span><i><span style="font-family:Verdana;font-size:12px;">n</span></i><span style="font-family:Verdana;font-size:12px;"> degree equations, including the radical and non-radical solutions. The theories of Abel and Galois contradicted with the fundamental theorem of algebra. Due to the reasons above, the proofs of Abel and Galois should be re-examined and re-evaluated. The author carefully analyzed the Abel’s original paper and found some serious mistakes. In order to prove that the general solution of algebraic equation</span></span><span style="font-size:10pt;font-family:;" "=""> </span><span style="font-size:12px;font-family:Verdana;">he proposed was effective for the cubic equation, Abel took the known solutions of cubic equation as a premise to calculate the parameters of his equation. Therefore, Abel’s proof is a logical circular argument and invalid. Besides, Abel confused the variables with the coefficients (constants) of algebraic equations. An expansion with 14 terms was written as 7 terms, 7 terms were missing.</span><span style="font-size:10pt;font-family:;" "=""> </span><span style="font-size:12px;font-family:Verdana;">We prefer to consider Galois’s theory as a hypothesis rather than a proof. Based on that permutation group </span><i><span style="font-size:12px;font-family:Verdana;">S</span></i><sub><span style="font-size:12px;font-family:Verdana;">5</span></sub><span style="font-size:12px;font-family:Verdana;"> had no true normal subgroup, Galois concluded that the quintic equations had no radical solutions, but these two problems had no inevitable logic connection actually. In order to prove the effectiveness of radical extension group of automorphism mapping for the cubic and quartic equations, in the Galois’s theory, some algebraic relations among the roots of equations were used to replace the root itself. This violated the original definition of automorphism mapping group, led to the confusion of concepts and arbitrariness. For the general cubic and quartic algebraic equations, the actual solving processes do not satisfy the tower structure of Galois’s solvable group. The resolvents of cubic and quartic equations are proved to have no symmetries of Galois’s soluble group actually. It is invalid to use the solvable group theory to judge whether the high degree equation has a radical solution. The conclusion of this paper is that there is only the </span><i><span style="font-size:10.0pt;font-family:;" "=""><span style="font-family:Verdana;font-size:12px;">S</span><sub><span style="font-family:Verdana;font-size:12px;">n</span></sub></span></i><span style="font-size:10pt;font-family:;" "=""><span style="font-family:Verdana;font-size:12px;"> symmetry for the </span><i><span style="font-family:Verdana;font-size:12px;">n</span></i><span style="font-family:Verdana;font-size:12px;"> degree algebraic equations. The symmetry of Galois’s solvable group does not exist. Mathematicians should get rid of the constraints of Abel and Galois’s theories, keep looking for the radical solutions of high degree equations.</span></span>展开更多
When analysing the thermal conductivity of magnetic fluids, the traditional Sharma-Tasso-Olver (STO) equation is crucial. The Sharma-Tasso-Olive equation’s approximate solution is the primary goal of this work. The q...When analysing the thermal conductivity of magnetic fluids, the traditional Sharma-Tasso-Olver (STO) equation is crucial. The Sharma-Tasso-Olive equation’s approximate solution is the primary goal of this work. The quintic B-spline collocation method is used for solving such nonlinear partial differential equations. The developed plan uses the collocation approach and finite difference method to solve the problem under consideration. The given problem is discretized in both time and space directions. Forward difference formula is used for temporal discretization. Collocation method is used for spatial discretization. Additionally, by using Von Neumann stability analysis, it is demonstrated that the devised scheme is stable and convergent with regard to time. Examining two analytical approaches to show the effectiveness and performance of our approximate solution.展开更多
In a prior paper, the d = 1 to d = 7 sense of AdS/CFT solutions were described in general whereas we did not introduce commentary as to GW polarization of gravitational radiation from a worm hole. We will discuss GW p...In a prior paper, the d = 1 to d = 7 sense of AdS/CFT solutions were described in general whereas we did not introduce commentary as to GW polarization of gravitational radiation from a worm hole. We will discuss GW polarization, for d = 1 and in addition say concrete facts as to the strength of the GW radiation, and admissible frequencies. First off, the term Δt is for the smallest unit of time step. Note that in the small Δt limit for d = 1 we avoid any imaginary time no matter what the sign of Ttemp is. And when d = 1 in order to have any solvability one would need X = Δt assumed to be infinitesimal. To first approximation, we set X = Δt as being of Planck time, 10-31 or so seconds, in duration.展开更多
A method constructinq C^1 Piecewise quintic polynomial over a triangular grid to interpo- late function values and partial derivatives at vertices is presented in this paper.The set of precise poly- nomials of this me...A method constructinq C^1 Piecewise quintic polynomial over a triangular grid to interpo- late function values and partial derivatives at vertices is presented in this paper.The set of precise poly- nomials of this method is discussed.展开更多
文摘For a class of quintic systems, the first 16 critical point quantities are obtained by computer algebraic system Mathematica, and the necessary and sufficient conditions that there exists an exact integral in a neighborhood of the origin are also given. The technique employed is essentially different from usual ones. The recursive formula for computation of critical point quantities is linear and then avoids complex integral operations. Some results show an interesting contrast with the related results on quadratic systems.
文摘By combining a pair of linear springs we devise a nonlinear vibrator. For a one dimensional scenario the nonlinear force is composed of a polynomial of odd powers of position-dependent variable greater than or equal three. For a chosen initial condition without compromising the generality of the problem we analyze the problem considering only the leading cubic term. We solve the equation of motion analytically leading to The Jacobi Elliptic Function. To avoid the complexity of the latter, we propose a practical, intuitive-based and easy to use alternative semi-analytic method producing the same result. We demonstrate that our method is intuitive and practical vs. the plug-in Jacobi function. According to the proposed procedure, higher order terms such as quintic and beyond easily may be included in the analysis. We also extend the application of our method considering a system of a three-linear spring. Mathematica [1] is being used throughout the investigation and proven to be an indispensable computational tool.
文摘Modern high speed machining (HSM) machine tools often operates at high speed and high feedrate with high ac- celerations,in order to deliver the rapid feed motion.This paper presents an interpolation algorithm to generate continuous quintic spline toolpaths,with a constant travel increment at each step,while the smoother accelerations and jerks of two-order curve are obtained.Then an approach for reducing the feedrate fluctuation in high speed spline interpolation is presented.The presented ap- proach has been validated to quickly,reliably and effective with the simulation.
文摘This paper presents a method for creating modificable quartic and quintic curves with shape parameters. The curves can achieve C 2 even C 3 continuity and unify both interpolation and approximation to the control points without solving a system of equations or inserting additional control points. They have the local properties like the cubic B spline. Besides, the quintic curve would be able globally to tend the control polygon.
基金supported by the Fundamental Research Funds for University of Science and Technology Beijing(FRF-BR-12-021)
文摘A semi-supervised vector machine is a relatively new learning method using both labeled and unlabeled data in classifi- cation. Since the objective function of the model for an unstrained semi-supervised vector machine is not smooth, many fast opti- mization algorithms cannot be applied to solve the model. In order to overcome the difficulty of dealing with non-smooth objective functions, new methods that can solve the semi-supervised vector machine with desired classification accuracy are in great demand. A quintic spline function with three-times differentiability at the ori- gin is constructed by a general three-moment method, which can be used to approximate the symmetric hinge loss function. The approximate accuracy of the quintic spiine function is estimated. Moreover, a quintic spline smooth semi-support vector machine is obtained and the convergence accuracy of the smooth model to the non-smooth one is analyzed. Three experiments are performed to test the efficiency of the model. The experimental results show that the new model outperforms other smooth models, in terms of classification performance. Furthermore, the new model is not sensitive to the increasing number of the labeled samples, which means that the new model is more efficient.
文摘This paper deals with the solutions of time independent Schrodinger wave equation for a two-dimensional PT-symmetric coupled quintic potential in its most general form. Employing wavefunction ansatz method, general analytic expressions for eigenvalues and eigenfunctions for first four states are obtained. Solutions of a particular case are also presented.
基金supported by the Postdoctoral Fund of China(Grant No.2011M501402)the National Natural Science Foundation of China(Grant No.61275039)+2 种基金the 973 Program of China(Grant No.2012CB315702)the Key Project of the Chinese Ministry of Education,China(Grant No.210186)the Major Project of the Natural Science Foundation supported by the Educational Department of Sichuan Province,China(Grant Nos.13ZA0081 and 12ZB019)
文摘The optical wave breaking (OWB) characteristics in terms of the pulse shape, spectrum, and frequency chirp, in the normal dispersion regime of an optical fiber with both the third-order dispersion (TOD) and quintic nonlinearity (QN) are numerically calculated. The results show that the TOD causes the asymmetry of the temporal- and spectral-domain, and the chirp characteristics. The OWB generally appears near the pulse center and at the trailing edge of the pulse, instead of at the two edges of the pulse symmetrically in the case of no TOD. With the increase of distance, the relation of OWB to the TOD near the pulse center increases quickly, leading to the generation of ultra-short pulse trains, while the OWB resulting from the case of no TOD at the trailing edge of the pulse disappears gradually. In addition, the positive (negative) QN enhances (weakens) the chirp amount and the fine structures, thereby inducing the OWB phenomena to appear earlier (later). Thus, the TOD and the positive (negative) QN are beneficial (detrimental) to the OWB and the generation of ultra-short pulse trains.
基金The project supported by National Natural Science Foundation of China, the Natural Science Foundation of Shandong Province of China, and the Natural Scienoe Foundation of Liaocheng University
文摘By using the extended hyperbolic function method, we have studied a quintic discrete nonlinear Schrodinger equation and obtained new exact localized solutions, including the discrete bright soliton solution, dark soliton solution, bright and dark soliton solution, alternating phase bright soliton solution, alternating phase dark soliton solution, and alternating phase bright and dark soliton solution, if a special relation is bound on the coefficients of the equation.
基金Project supported by the National Natural Science Foundation of China(Grant No.11175158)the Natural Science Foundation of Zhejiang Province of China(Grant No.LY12A04001)
文摘A class of analytical solitary-wave solutions to the generalized nonautonomous cubic–quintic nonlinear Schrdinger equation with time-and space-modulated coefficients and potentials are constructed using the similarity transformation technique. Constraints for the dispersion coefficient, the cubic and quintic nonlinearities, the external potential, and the gain (loss) coefficient are presented at the same time. Various shapes of analytical solitary-wave solutions which have important applications of physical interest are studied in detail, such as the solutions in Feshbach resonance management with harmonic potentials, Faraday-type waves in the optical lattice potentials, and localized solutions supported by the Gaussian-shaped nonlinearity. The stability analysis of the solutions is discussed numerically.
文摘By making use of our generalization of Barrucand and Cohn’s theory of principal factorizations in pure cubic fields and their Galois closures with 3 possible types to pure quintic fields and their pure metacyclic normal fields with 13 possible types, we compile an extensive database with arithmetical invariants of the 900 pairwise non-isomorphic fields N having normalized radicands in the range 2≤D3. Our classification is based on the Galois cohomology of the unit group UN, viewed as a module over the automorphism group Gal(N/K) of N over the cyclotomic field K=Q(ξ5), by employing theorems of Hasse and Iwasawa on the Herbrand quotient of the unit norm index (Uk:NN/K(UN)) by the number #(PN/K/PK) of primitive ambiguous principal ideals, which can be interpreted as principal factors of the different DN/K. The precise structure of the F5-vector space of differential principal factors is expressed in terms of norm kernels and central orthogonal idempotents. A connection with integral representation theory is established via class number relations by Parry and Walter involving the index of subfield units (UN:U0).?The statistical distribution of the 13 principal factorization types and their refined splitting into similarity classes with representative prototypes is discussed thoroughly.
文摘It is proved in this paper that Abel’s and Galois’s proofs that the quintic equations have no radical solutions are invalid. Due to Abel’s and Galois’s work about two hundred years ago, it was generally accepted that general quintic equations had no radical solutions. However, Tang Jianer <i><span style="font-family:Verdana;font-size:12px;">et</span></i><i><span style="font-size:12px;font-family:Verdana;"> al</span><span style="font-size:12px;font-family:Verdana;">.</span></i><span style="font-size:10pt;font-family:;" "=""><span style="font-family:Verdana;font-size:12px;"> recently prove that there are radical solutions for some quintic equations with special forms. The theories of Abel and Galois cannot explain these results. On the other hand, Gauss </span><i><span style="font-family:Verdana;font-size:12px;">et</span></i></span><i><span style="font-size:12px;font-family:Verdana;"> al</span><span style="font-size:12px;font-family:Verdana;">.</span></i><span style="font-size:10pt;font-family:;" "=""><span style="font-family:Verdana;font-size:12px;"> proved the fundamental theorem of algebra. The theorem declared that there were </span><i><span style="font-family:Verdana;font-size:12px;">n</span></i><span style="font-family:Verdana;font-size:12px;"> solutions for the </span><i><span style="font-family:Verdana;font-size:12px;">n</span></i><span style="font-family:Verdana;font-size:12px;"> degree equations, including the radical and non-radical solutions. The theories of Abel and Galois contradicted with the fundamental theorem of algebra. Due to the reasons above, the proofs of Abel and Galois should be re-examined and re-evaluated. The author carefully analyzed the Abel’s original paper and found some serious mistakes. In order to prove that the general solution of algebraic equation</span></span><span style="font-size:10pt;font-family:;" "=""> </span><span style="font-size:12px;font-family:Verdana;">he proposed was effective for the cubic equation, Abel took the known solutions of cubic equation as a premise to calculate the parameters of his equation. Therefore, Abel’s proof is a logical circular argument and invalid. Besides, Abel confused the variables with the coefficients (constants) of algebraic equations. An expansion with 14 terms was written as 7 terms, 7 terms were missing.</span><span style="font-size:10pt;font-family:;" "=""> </span><span style="font-size:12px;font-family:Verdana;">We prefer to consider Galois’s theory as a hypothesis rather than a proof. Based on that permutation group </span><i><span style="font-size:12px;font-family:Verdana;">S</span></i><sub><span style="font-size:12px;font-family:Verdana;">5</span></sub><span style="font-size:12px;font-family:Verdana;"> had no true normal subgroup, Galois concluded that the quintic equations had no radical solutions, but these two problems had no inevitable logic connection actually. In order to prove the effectiveness of radical extension group of automorphism mapping for the cubic and quartic equations, in the Galois’s theory, some algebraic relations among the roots of equations were used to replace the root itself. This violated the original definition of automorphism mapping group, led to the confusion of concepts and arbitrariness. For the general cubic and quartic algebraic equations, the actual solving processes do not satisfy the tower structure of Galois’s solvable group. The resolvents of cubic and quartic equations are proved to have no symmetries of Galois’s soluble group actually. It is invalid to use the solvable group theory to judge whether the high degree equation has a radical solution. The conclusion of this paper is that there is only the </span><i><span style="font-size:10.0pt;font-family:;" "=""><span style="font-family:Verdana;font-size:12px;">S</span><sub><span style="font-family:Verdana;font-size:12px;">n</span></sub></span></i><span style="font-size:10pt;font-family:;" "=""><span style="font-family:Verdana;font-size:12px;"> symmetry for the </span><i><span style="font-family:Verdana;font-size:12px;">n</span></i><span style="font-family:Verdana;font-size:12px;"> degree algebraic equations. The symmetry of Galois’s solvable group does not exist. Mathematicians should get rid of the constraints of Abel and Galois’s theories, keep looking for the radical solutions of high degree equations.</span></span>
文摘When analysing the thermal conductivity of magnetic fluids, the traditional Sharma-Tasso-Olver (STO) equation is crucial. The Sharma-Tasso-Olive equation’s approximate solution is the primary goal of this work. The quintic B-spline collocation method is used for solving such nonlinear partial differential equations. The developed plan uses the collocation approach and finite difference method to solve the problem under consideration. The given problem is discretized in both time and space directions. Forward difference formula is used for temporal discretization. Collocation method is used for spatial discretization. Additionally, by using Von Neumann stability analysis, it is demonstrated that the devised scheme is stable and convergent with regard to time. Examining two analytical approaches to show the effectiveness and performance of our approximate solution.
文摘In a prior paper, the d = 1 to d = 7 sense of AdS/CFT solutions were described in general whereas we did not introduce commentary as to GW polarization of gravitational radiation from a worm hole. We will discuss GW polarization, for d = 1 and in addition say concrete facts as to the strength of the GW radiation, and admissible frequencies. First off, the term Δt is for the smallest unit of time step. Note that in the small Δt limit for d = 1 we avoid any imaginary time no matter what the sign of Ttemp is. And when d = 1 in order to have any solvability one would need X = Δt assumed to be infinitesimal. To first approximation, we set X = Δt as being of Planck time, 10-31 or so seconds, in duration.
文摘A method constructinq C^1 Piecewise quintic polynomial over a triangular grid to interpo- late function values and partial derivatives at vertices is presented in this paper.The set of precise poly- nomials of this method is discussed.