期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Effect of Biosynthesized Silver Nanoparticles on Staphylococcus aureus Biofilm Quenching and Prevention of Biofilm Formation 被引量:2
1
作者 Pratik R.Chaudhari Shalaka A.Masurkar +1 位作者 Vrishali B.Shidore Suresh P.Kamble 《Nano-Micro Letters》 SCIE EI CAS 2012年第1期34-39,共6页
The development of green experimental processes for the synthesis of nanoparticles is a need in the field of nanotechnology. The synthesis of silver nanoparticles was achieved using Bacillus cereus supernatant and1 m ... The development of green experimental processes for the synthesis of nanoparticles is a need in the field of nanotechnology. The synthesis of silver nanoparticles was achieved using Bacillus cereus supernatant and1 m M silver nitrate. 100 m M glucose was found to quicken the rate of reaction of silver nanoparticles synthesis.UV-visible spectrophotometric analysis was carried out to assess the synthesis of silver nanoparticles. The synthesized silver nanoparticles were further characterized by using Nanoparticle Tracking Analyzer(NTA),Transmission Electron Microscope and Energy Dispersive X-ray spectra. These silver nanoparticles showed enhanced quorum quenching activity against Staphylococcus aureus biofilm and prevention of biofilm formation which can be seen under inverted microscope(40 X). The synergistic effect of silver nanoparticles along with antibiotics in biofilm quenching was found to be effective. In the near future, silver nanoparticles could be used in the treatment of infections caused by highly antibiotic resistant biofilm. 展开更多
关键词 Silver Nanoparticles Green Synthesis Bacillus cereus BIOFILM quorum quenching
下载PDF
Screening strategies for quorum sensing inhibitors in combating bacterial infections 被引量:1
2
作者 Lan Lu Mingxing Li +7 位作者 Guojuan Yi Li Liao Qiang Cheng Jie Zhu Bin Zhang Yingying Wang Yong Chen Ming Zeng 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2022年第1期1-14,共14页
Interference with quorum sensing(QS)represents an antivirulence strategy with a significant promise for the treatment of bacterial infections and a new approach to restoring antibiotic tolerance.Over the past two deca... Interference with quorum sensing(QS)represents an antivirulence strategy with a significant promise for the treatment of bacterial infections and a new approach to restoring antibiotic tolerance.Over the past two decades,a novel series of studies have reported that quorum quenching approaches and the discovery of quorum sensing inhibitors(QSIs)have a strong impact on the discovery of anti-infective drugs against various types of bacteria.The discovery of QSI was demonstrated to be an appropriate strategy to expand the anti-infective therapeutic approaches to complement classical antibiotics and antimicrobial agents.For the discovery of QSIs,diverse approaches exist and develop in-step with the scale of screening as well as specific QS systems.This review highlights the latest findings in strategies and methodologies for QSI screening,involving activity-based screening with bioassays,chemical methods to seek bacterial QS pathways for QSI discovery,virtual screening for QSI screening,and other potential tools for interpreting QS signaling,which are innovative routes for future efforts to discover additional QSIs to combat bacterial infections. 展开更多
关键词 quorum sensing inhibitor quorum quenching Anti-infective agent Screening strategies
下载PDF
Supplemental N-acyl homoserine lactonase alleviates intestinal disruption and improves gut microbiota in broilers challenged by Salmonella Typhimurium 被引量:1
3
作者 Weiwei Wang Jingseng Ou +5 位作者 Hui Ye Qingyun Cao Changming Zhang Zemin Dong Dingyuan Feng Jianjun Zuo 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2023年第4期1598-1616,共19页
Background Salmonella Typhimurium challenge causes a huge detriment to chicken production.N-acyl homoserine lactonase(AHLase),a quorum quenching enzyme,potentially inhibits the growth and virulence of Gram-negative ba... Background Salmonella Typhimurium challenge causes a huge detriment to chicken production.N-acyl homoserine lactonase(AHLase),a quorum quenching enzyme,potentially inhibits the growth and virulence of Gram-negative bacteria.However,it is unknown whether AHLase can protect chickens against S.Typhimurium challenge.This study aimed to evaluate the effects of AHLase on growth performance and intestinal health in broilers challenged by S.Typhimurium.A total of 240 one-day-old female crossbred broilers(817C)were randomly divided into 5 groups(6 replicates/group):negative control(NC),positive control(PC),and PC group supplemented with 5,10 or 20 U/g AHLase.All birds except those in NC were challenged with S.Typhimurium from 7 to 9 days of age.All parameters related to growth and intestinal health were determined on d 10 and 14.Results The reductions(P<0.05)in body weight(BW)and average daily gain(ADG)in challenged birds were alleviated by AHLase addition especially at 10 U/g.Thus,samples from NC,PC and PC plus 10 U/g AHLase group were selected for further analysis.S.Typhimurium challenge impaired(P<0.05)intestinal morphology,elevated(P<0.05)ileal inflammatory cytokines(IL-1βand IL-8)expression,and increased(P<0.05)serum diamine oxidase(DAO)activity on d 10.However,AHLase addition normalized these changes.Gut microbiota analysis on d 10 showed that AHLase reversed the reductions(P<0.05)in several beneficial bacteria(e.g.Bacilli,Bacillales and Lactobacillales),along with increases(P<0.05)in certain harmful bacteria(e.g.Proteobacteria,Gammaproteobacteria,Enterobacteriaceae and Escherichia/Shigel a)in PC group.Furthermore,AHLase-induced increased beneficial bacteria and decreased harmful bacteria were basically negatively correlated(P<0.05)with the reductions of ileal IL-1βand IL-8 expression and serum DAO activity,but positively correlated(P<0.05)with the increased BW and ADG.Functional prediction revealed that AHLase abolished S.Typhimurium-induced upregulations(P<0.05)of certain pathogenicity-related pathways such as lipopolysaccharide biosynthesis,shigellosis,bacterial invasion of epithelial cells and pathogenic Escherichia coli infection of gut microbiota.Conclusions Supplemental AHLase attenuated S.Typhimurium-induced growth retardation and intestinal disruption in broilers,which could be associated with the observed recovery of gut microbiota dysbiosis. 展开更多
关键词 BROILER Growth performance Gut microbiota Intestinal inflammation N-acyl homoserine lactonase quorum quenching Salmonella Typhimurium
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部