期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Reducing Subspaces of Toeplitz Operators on N_φ-type Quotient Modules on the Torus
1
作者 WU NAN Xu XIAN-MIN 《Communications in Mathematical Research》 CSCD 2009年第1期19-29,共11页
In this paper, we prove that the Toeplitz operator with finite Blaschke product symbol Sψ(z) on Nφ has at least m non-trivial minimal reducing subspaces, where m is the dimension of H^2(Гω)⊙φ(ω)H^2(Гω... In this paper, we prove that the Toeplitz operator with finite Blaschke product symbol Sψ(z) on Nφ has at least m non-trivial minimal reducing subspaces, where m is the dimension of H^2(Гω)⊙φ(ω)H^2(Гω). Moreover, the restriction of Sψ(z) on any of these minimal reducing subspaces is unitary equivalent to the Bergman shift Mz. 展开更多
关键词 module Nφ-type quotient module the analytic Toeplitz operator reducing subspace finite Blaschke product
下载PDF
Essentially normal Hilbert modules and K-homology IV:Quasi-homogenous quotient modules of Hardy module on the polydisks 被引量:2
2
作者 GUO KunYu WANG PengHui 《Science China Mathematics》 SCIE 2012年第8期1613-1626,共14页
In this paper,we give a complete characterization for the essential normality of quasi-homogenous quotient modules of the Hardy modules H2 (D2).Also,we show that if d 3,then all the principle homogenous quotient modul... In this paper,we give a complete characterization for the essential normality of quasi-homogenous quotient modules of the Hardy modules H2 (D2).Also,we show that if d 3,then all the principle homogenous quotient modules of H 2 (Dd) are not essentially normal. 展开更多
关键词 essential normality Hilbert modules POLYDISK quotient modules quasi-homogenous polynomial
原文传递
Nψ,φ-type Quotient Modules over the Bidisk 被引量:1
3
作者 Chang Hui WU Tao YU 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2020年第8期943-960,共18页
Let H^2(D^2)be the Hardy space over the bidisk D^2,and let Mψ,φ=[(ψ(z)-φ(w))^2]be the submodule generated by(ψ(z)-φ(w))2,whereψ(z)andφ(w)are nonconstant inner functions.The related quotient module is denoted b... Let H^2(D^2)be the Hardy space over the bidisk D^2,and let Mψ,φ=[(ψ(z)-φ(w))^2]be the submodule generated by(ψ(z)-φ(w))2,whereψ(z)andφ(w)are nonconstant inner functions.The related quotient module is denoted by Nψ,φ=H^2(D^2)ΘMψ,φ.In this paper,we give a complete characterization for the essential normality of Nψ,φ.In particular,ifψ(z)=z,we simply write Mψ,φand Nψ,φas Mφand Nφrespectively.This paper also studies compactness of evaluation operators L(0)|Nφand R(0)|Nφ,essential spectrum of compression operator Sz on Nφ,essential normality of compression operators Sz and Sw on Nφ. 展开更多
关键词 quotient module compression operators essential normality
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部