期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
High-Efficiency Electromagnetic Interference Shielding of rGO@FeNi/Epoxy Composites with Regular Honeycomb Structures 被引量:21
1
作者 Ping Song Zhonglei Ma +2 位作者 Hua Qiu Yifan Ru Junwei Gu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第3期244-256,共13页
With the rapid development of fifth-generation mobile com-munication technology and wearable electronic devices,electromagnetic interference and radiation pollution caused by electromagnetic waves have attracted world... With the rapid development of fifth-generation mobile com-munication technology and wearable electronic devices,electromagnetic interference and radiation pollution caused by electromagnetic waves have attracted worldwide attention.Therefore,the design and development of highly efficient EMI shielding materials are of great importance.In this work,the three-dimensional graphene oxide(GO)with regular honeycomb structure(GH)is firstly constructed by sacrificial template and freeze-dry-ing methods.Then,the amino functionalized FeNi alloy particles(f-FeNi)are loaded on the GH skeleton followed by in-situ reduction to prepare rGH@FeNi aerogel.Finally,the rGH@FeNi/epoxy EMI shielding com-posites with regular honeycomb structure is obtained by vacuum-assisted impregnation of epoxy resin.Benefitting from the construction of regular honeycomb structure and electromagnetic synergistic effect,the rGH@FeNi/epoxy composites with a low rGH@FeNi mass fraction of 2.1 wt%(rGH and f-FeNi are 1.2 and 0.9 wt%,respectively)exhibit a high EMI shielding effectiveness(EMI SE)of 46 dB,which is 5.8 times of that(8 dB)for rGO/FeNi/epoxy composites with the same rGO/FeNi mass fraction.At the same time,the rGH@FeNi/epoxy composites also possess excellent thermal stability(heat-resistance index and temperature at the maximum decomposition rate are 179.1 and 389.0°C respectively)and mechanical properties(storage modulus is 8296.2 MPa). 展开更多
关键词 Electromagnetic interference shielding rgo@feni Epoxy resins Honeycomb structures
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部