[Objective] To investigate the protective efficacy of currently available Newcastle disease vaccines against currently prevalent strains and thus provide guidance for the application of vaccines and the prevention and...[Objective] To investigate the protective efficacy of currently available Newcastle disease vaccines against currently prevalent strains and thus provide guidance for the application of vaccines and the prevention and control of Newcastle disease. E Method] The 6-week-old SPF chickens were respectively inoculated with five live attenuated Newcastle disease vaccines (A, B, C, D, and E) at the dose of 1-fold or 0.01-fold usage via intranasal, intraocular or oral route. After 14 d post immunization, the titers of HI antibody were detected. And all the chickens were chal- lenged by Newcastle disease virus (NDV) FEo standard strain or the isolated wild strains, NDV-2007-HB and NDV-2008-YB. The clinical symptoms of chickens were continuously observed, and the morbidity and mortality were determined. [ Resalt] After 14 d post immunization, antibodies were induced at a protective level in chickens immunized with the five vaccines. As shown by the animal experiment, the five vaccines at the dose of 1-fold or 0.01-fold usage protected all vaccinated chickens from the death caused by NDV strain, and more than 90% of vaccinated chick- ens from the death caused by NDV-2007-HB strain, while the vaccines, A, B, and C, at the dose of 0.01 -fold usage protected more than 90% of vaccinated chickens from the death caused by NDV-2008-YB strain. E Conclusion] Under laboratory conditions, the currently available Newcastle disease vaccines have better protective efficacy against the two currently prevalent NDV strains and prevent the occurrence of Newcastle disease.展开更多
E1 Tor Vibrio cholerae (EVC) strains may be classifled into two kinds-epidemigenic (EEVC) strains and non-epidemigenic (NEEVC) strains-based on a phage-biotyping system. A large number of EEVC strains have been screen...E1 Tor Vibrio cholerae (EVC) strains may be classifled into two kinds-epidemigenic (EEVC) strains and non-epidemigenic (NEEVC) strains-based on a phage-biotyping system. A large number of EEVC strains have been screened for toxigenic and putative colonization attributes. One such naturally occurring strain (designated IEM 101) has been found which is devoid of genes encoding cholera toxin (CT), accessory cholera enterotoxin (ACE), zonula occludens toxin (ZOT), but possesses RS1 sequences and toxin-coregulated pilus A gene (tcpA) although tcpA is poorly expressed. It expresses type B pili but does not posses type C pili. It is an E1 Tor Ogawa strain and does not cause fluid accumulation in rabbit ileal loop tests. Active immunization of rabbits with strain IEM 101 elicited good protection against challenge with virulent strains of V cholerae O1. Oral administrationcaused no side effects in 15 human volunteers, colonized the gut for four to ten days and elicited good immune responses展开更多
Some H5 viruses isolated in poultry or wild birds between 2020 and 2021 were found to be antigenically different from the vaccine strains(H5-Re11 and H5-Re12) used in China. In this study, we generated three new recom...Some H5 viruses isolated in poultry or wild birds between 2020 and 2021 were found to be antigenically different from the vaccine strains(H5-Re11 and H5-Re12) used in China. In this study, we generated three new recombinant vaccine seed viruses by using reverse genetics and used them for vaccine production. The vaccine strain H5-Re13 contains the hemagglutinin(HA) and neuraminidase(NA) genes of an H5 N6 virus that bears the clade 2.3.4.4 h HA gene, H5-Re14 contains the HA and NA genes of an H5 N8 virus that bears the clade 2.3.4.4 b HA gene, and H7-Re4 contains the HA and NA genes of H7 N9 virus detected in 2021. We evaluated the protective efficacy of the novel H5/H7 trivalent inactivated vaccine in chickens, ducks, and geese. The inactivated vaccine was immunogenic and induced substantial antibody responses in the birds tested. Three weeks after vaccination, chickens were challenged with five different viruses detected in 2020 and 2021: three viruses(an H5 N1 virus, an H5 N6 virus, and an H5 N8 virus) bearing the clade 2.3.4.4 b HA gene, an H5 N6 virus bearing the clade 2.3.4.4 h HA gene, and an H7 N9 virus. All of the control birds shed high titers of virus and died within 4 days post-challenge, whereas the vaccinated chickens were completely protected from these viruses. Similar protective efficacy against H5 viruses bearing the clade 2.3.4.4 h or 2.3.4.4 b HA gene was observed in ducks and geese. Our study indicates that the newly updated H5/H7 vaccine can provide solid protection against the H5 and H7 N9 viruses that are currently circulating in nature.展开更多
We developed an H5/H7 trivalent inactivated vaccine by using Re-11, Re-12, and H7-Re2 vaccine seed viruses, which were generated by reverse genetics and derived their HA genes from A/duck/Guizhou/S4184/2017(H5N6) (DK/...We developed an H5/H7 trivalent inactivated vaccine by using Re-11, Re-12, and H7-Re2 vaccine seed viruses, which were generated by reverse genetics and derived their HA genes from A/duck/Guizhou/S4184/2017(H5N6) (DK/GZ/S4184/17) (a clade 2.3.4.4d virus), A/chicken/Liaoning/SD007/2017(H5N1) (CK/LN/SD007/17) (a clade 2.3.2.1d virus), and A/chicken/ Guangxi/SD098/2017(H7N9) (CK/GX/SD098/17), respectively. The protective efficacy of this novel vaccine and that of the recently used H5/H7 bivalent inactivated vaccine against different H5 and H7N9 viruses was evaluated in chickens. We found that the H5/H7 bivalent vaccine provided solid protection against the H7N9 virus CK/GX/SD098/17, but only 50–60% protection against different H5 viruses. In contrast, the novel H5/H7 trivalent vaccine provided complete protection against the H5 and H7 viruses tested. Our study underscores the importance of timely updating of vaccines for avian influenza control.展开更多
Classical swine fever (CSF), a list A disease of Office International des Epizooties, is caused by classical swine fever virus (CSFV) belonging to the Flaviviridae family. The well-known lapinized Chinese strain o...Classical swine fever (CSF), a list A disease of Office International des Epizooties, is caused by classical swine fever virus (CSFV) belonging to the Flaviviridae family. The well-known lapinized Chinese strain of CSFV, also known as C-strain, was developed in China in the mid-1950s. In the past half a century, the vaccine has been proved to be safe and immunogenic in pigs of essentially any age. It is of high efficacy, providing immunized animals with broad-spectrum, sometimes lifelong, protection, which is contributed by both cell-mediated immunity and humoral immunity, against essentially all genotypes or subgenotypes of the virus. The maternal antibodies derived from immunized sows can confer solid protection of their offspring from disease; however, they have been proved to inhibit the successful active immunization of C-strain vaccine. The complete genomes of C-strain and dozens of established or field strains have been sequenced and annotated. Recently, the reverse genetics system of C-strain has been developed, resulting in several C- strain-derived candidate marker vaccines. Many countries manage to control or even eradicate CSF with the aid of mass vaccination with C-strain. in spite of these efforts, the eradication of the disease worldwide remains a big challenge and needs to go a long way, and provably still resorts to genetically modified C-strain vaccine. The authors present an overview of the characteristics of the vaccine, which has stood the test of half a century.展开更多
Effects of attenuated highly pathogenic pig reproductive and respiratory syndrome(HP-PRRS)TJM-F92 strain vaccine on immune antibody level against classical swine fever(CSF)and foot-and-mouth disease(FMD)were stu...Effects of attenuated highly pathogenic pig reproductive and respiratory syndrome(HP-PRRS)TJM-F92 strain vaccine on immune antibody level against classical swine fever(CSF)and foot-and-mouth disease(FMD)were studied from October 8 to November 12 in 2014,in order to optimize vaccination program of CSF,HP-PRRS and FMD and to provide scientific guidance for animal disease control and prevention work.The results showed that attenuated HP-PRRS(TJMF92 strain)vaccine had no significant effect on immune antibody level of hog cholera lapinized virus(HCLV,ST passage cell vaccine)attenuated vaccine and FMD-O inactivated vaccines(OZK/93 strain),and single or combined use of three vaccines received good immunization effects.展开更多
Objective To prepare the 4 candidate vaccine strains of H5N1 avian influenza virus isolated in China Methods Recombinant viruses were rescued using reverse genetics. Neuraminidase (NA) and hemagglutinin (HA) segme...Objective To prepare the 4 candidate vaccine strains of H5N1 avian influenza virus isolated in China Methods Recombinant viruses were rescued using reverse genetics. Neuraminidase (NA) and hemagglutinin (HA) segments of the A/Xinjiang/1/2006, A/Guangxi/1/2009, A/Hubei/1/2010, and A/Guangdong/1/2011 viruses were amplified by RT-PCR. Multibasic amino acid cleavage site of HA was removed and ligated into the pCIpoll vector for virus rescue. The recombinant viruses were evaluated by trypsin dependent assays. Their embnjonate survival and antigenicity were compared with those of the respective wild-type viruses. Results The 4 recombinant viruses showed similar antigenicity compared with wild-type viruses, chicken embryo survival and trypsin-dependent characteristics. Conclusion The 4 recombinant viruses rescued using reverse genetics meet the criteria for classification of low pathogenic avian influenza strains, thus supporting the use of them for the development of seeds and production of pre-pandemic vaccines.展开更多
To study the immune effect of recombinant avian influenza virus H5 subtype bivalent inactivated vaccine ( HSN1, Re-6 strain + Re-4 strain) and to provide the basis for formulating reasonable immune procedure of avi...To study the immune effect of recombinant avian influenza virus H5 subtype bivalent inactivated vaccine ( HSN1, Re-6 strain + Re-4 strain) and to provide the basis for formulating reasonable immune procedure of avian influenza vaccine in clinical practice. A total of 12 batches of vaccines from three companies were used for the iannune of SPF chickens and SPF ducks. Each chicken or duck serum was separately collected every 3 weeks until the immunization up to the 24^th week. The serum antibody titers of Re-6 and Re-4 were detected. The results showed that the HI titers of the inoculated SPF chickens and SPF ducks roached the peak when the immune time were the 6^th and 3^rd week after the first immunization respectively; then the titer decreased gradually as time prolonged; the highest titer of SPF chickens was greater than that of SPF ducks; the high titer duration of SPF chickens were longer than that of SPF ducks ; and all the vaccines from the three companies showed a good immune effect.展开更多
Background: There have been no reported studies involving aerosol immunization with 2 of the 3 components of MMR II vaccine—Attenuvax measles vaccine and Jeryl-Lyn mumps vaccine. Objective: To evaluate the safety and...Background: There have been no reported studies involving aerosol immunization with 2 of the 3 components of MMR II vaccine—Attenuvax measles vaccine and Jeryl-Lyn mumps vaccine. Objective: To evaluate the safety and antibody responses to aerosolized Attenuvax measles strain, Jeryl Lynn mumps strain and RA 27/3 rubella component of an MMR vaccine in adults, before assessing the booster administration of this vaccine in children. Methods: A pilot study to evaluate safety and antibody responses of MMR II (Merch Sharp & Dhome Corp., Whitehouse Station, NJ 08889, USA) components administered by aerosol was carried out in 27 healthy adults of 21 to 38 years of age. All participants were followed-up during 28 days following immunization for detection of clinical adverse events. Immune response was evaluated by plaque reduction neutralization test for measles, and commercial ELISA kits for rubella and mumps. Results: Only mild clinical adverse events were noted. Despite high levels of baseline seropositivity to all vaccine components, seroresponses to measles, rubella and mumps occurred in 44%, 15% and 41%, respectively. Conclusions: These outcomes compare favorably with earlier studies of other MMR vaccines given by aerosol. Further evaluations on safety and booster immune response should be performed in children.展开更多
文摘[Objective] To investigate the protective efficacy of currently available Newcastle disease vaccines against currently prevalent strains and thus provide guidance for the application of vaccines and the prevention and control of Newcastle disease. E Method] The 6-week-old SPF chickens were respectively inoculated with five live attenuated Newcastle disease vaccines (A, B, C, D, and E) at the dose of 1-fold or 0.01-fold usage via intranasal, intraocular or oral route. After 14 d post immunization, the titers of HI antibody were detected. And all the chickens were chal- lenged by Newcastle disease virus (NDV) FEo standard strain or the isolated wild strains, NDV-2007-HB and NDV-2008-YB. The clinical symptoms of chickens were continuously observed, and the morbidity and mortality were determined. [ Resalt] After 14 d post immunization, antibodies were induced at a protective level in chickens immunized with the five vaccines. As shown by the animal experiment, the five vaccines at the dose of 1-fold or 0.01-fold usage protected all vaccinated chickens from the death caused by NDV strain, and more than 90% of vaccinated chick- ens from the death caused by NDV-2007-HB strain, while the vaccines, A, B, and C, at the dose of 0.01 -fold usage protected more than 90% of vaccinated chickens from the death caused by NDV-2008-YB strain. E Conclusion] Under laboratory conditions, the currently available Newcastle disease vaccines have better protective efficacy against the two currently prevalent NDV strains and prevent the occurrence of Newcastle disease.
文摘E1 Tor Vibrio cholerae (EVC) strains may be classifled into two kinds-epidemigenic (EEVC) strains and non-epidemigenic (NEEVC) strains-based on a phage-biotyping system. A large number of EEVC strains have been screened for toxigenic and putative colonization attributes. One such naturally occurring strain (designated IEM 101) has been found which is devoid of genes encoding cholera toxin (CT), accessory cholera enterotoxin (ACE), zonula occludens toxin (ZOT), but possesses RS1 sequences and toxin-coregulated pilus A gene (tcpA) although tcpA is poorly expressed. It expresses type B pili but does not posses type C pili. It is an E1 Tor Ogawa strain and does not cause fluid accumulation in rabbit ileal loop tests. Active immunization of rabbits with strain IEM 101 elicited good protection against challenge with virulent strains of V cholerae O1. Oral administrationcaused no side effects in 15 human volunteers, colonized the gut for four to ten days and elicited good immune responses
基金supported by the National Key Research and Development Program of China(2021YFD1800200)the Laboratory for Lingnan Modern Agriculture Project(NT2021007)the China Agriculture Research System of the MOF and MARA(CARS-41-G12)。
文摘Some H5 viruses isolated in poultry or wild birds between 2020 and 2021 were found to be antigenically different from the vaccine strains(H5-Re11 and H5-Re12) used in China. In this study, we generated three new recombinant vaccine seed viruses by using reverse genetics and used them for vaccine production. The vaccine strain H5-Re13 contains the hemagglutinin(HA) and neuraminidase(NA) genes of an H5 N6 virus that bears the clade 2.3.4.4 h HA gene, H5-Re14 contains the HA and NA genes of an H5 N8 virus that bears the clade 2.3.4.4 b HA gene, and H7-Re4 contains the HA and NA genes of H7 N9 virus detected in 2021. We evaluated the protective efficacy of the novel H5/H7 trivalent inactivated vaccine in chickens, ducks, and geese. The inactivated vaccine was immunogenic and induced substantial antibody responses in the birds tested. Three weeks after vaccination, chickens were challenged with five different viruses detected in 2020 and 2021: three viruses(an H5 N1 virus, an H5 N6 virus, and an H5 N8 virus) bearing the clade 2.3.4.4 b HA gene, an H5 N6 virus bearing the clade 2.3.4.4 h HA gene, and an H7 N9 virus. All of the control birds shed high titers of virus and died within 4 days post-challenge, whereas the vaccinated chickens were completely protected from these viruses. Similar protective efficacy against H5 viruses bearing the clade 2.3.4.4 h or 2.3.4.4 b HA gene was observed in ducks and geese. Our study indicates that the newly updated H5/H7 vaccine can provide solid protection against the H5 and H7 N9 viruses that are currently circulating in nature.
基金This work was supported by the National Key R&D Program of China(2016YFD0501602,2017YFD0500701,and 2016YFEO203200)the National Natural Science Foundation of China(3167131307)+1 种基金the China Agriculture Research System(CARS-41-G12)and Central Publicinterest Scientific Institution Basal Research Fund(1610302017001).
文摘We developed an H5/H7 trivalent inactivated vaccine by using Re-11, Re-12, and H7-Re2 vaccine seed viruses, which were generated by reverse genetics and derived their HA genes from A/duck/Guizhou/S4184/2017(H5N6) (DK/GZ/S4184/17) (a clade 2.3.4.4d virus), A/chicken/Liaoning/SD007/2017(H5N1) (CK/LN/SD007/17) (a clade 2.3.2.1d virus), and A/chicken/ Guangxi/SD098/2017(H7N9) (CK/GX/SD098/17), respectively. The protective efficacy of this novel vaccine and that of the recently used H5/H7 bivalent inactivated vaccine against different H5 and H7N9 viruses was evaluated in chickens. We found that the H5/H7 bivalent vaccine provided solid protection against the H7N9 virus CK/GX/SD098/17, but only 50–60% protection against different H5 viruses. In contrast, the novel H5/H7 trivalent vaccine provided complete protection against the H5 and H7 viruses tested. Our study underscores the importance of timely updating of vaccines for avian influenza control.
文摘Classical swine fever (CSF), a list A disease of Office International des Epizooties, is caused by classical swine fever virus (CSFV) belonging to the Flaviviridae family. The well-known lapinized Chinese strain of CSFV, also known as C-strain, was developed in China in the mid-1950s. In the past half a century, the vaccine has been proved to be safe and immunogenic in pigs of essentially any age. It is of high efficacy, providing immunized animals with broad-spectrum, sometimes lifelong, protection, which is contributed by both cell-mediated immunity and humoral immunity, against essentially all genotypes or subgenotypes of the virus. The maternal antibodies derived from immunized sows can confer solid protection of their offspring from disease; however, they have been proved to inhibit the successful active immunization of C-strain vaccine. The complete genomes of C-strain and dozens of established or field strains have been sequenced and annotated. Recently, the reverse genetics system of C-strain has been developed, resulting in several C- strain-derived candidate marker vaccines. Many countries manage to control or even eradicate CSF with the aid of mass vaccination with C-strain. in spite of these efforts, the eradication of the disease worldwide remains a big challenge and needs to go a long way, and provably still resorts to genetically modified C-strain vaccine. The authors present an overview of the characteristics of the vaccine, which has stood the test of half a century.
文摘Effects of attenuated highly pathogenic pig reproductive and respiratory syndrome(HP-PRRS)TJM-F92 strain vaccine on immune antibody level against classical swine fever(CSF)and foot-and-mouth disease(FMD)were studied from October 8 to November 12 in 2014,in order to optimize vaccination program of CSF,HP-PRRS and FMD and to provide scientific guidance for animal disease control and prevention work.The results showed that attenuated HP-PRRS(TJMF92 strain)vaccine had no significant effect on immune antibody level of hog cholera lapinized virus(HCLV,ST passage cell vaccine)attenuated vaccine and FMD-O inactivated vaccines(OZK/93 strain),and single or combined use of three vaccines received good immunization effects.
基金supported by the National High Technology Research and Development Program of China(863 Program)SQ2009AA02XK1487370
文摘Objective To prepare the 4 candidate vaccine strains of H5N1 avian influenza virus isolated in China Methods Recombinant viruses were rescued using reverse genetics. Neuraminidase (NA) and hemagglutinin (HA) segments of the A/Xinjiang/1/2006, A/Guangxi/1/2009, A/Hubei/1/2010, and A/Guangdong/1/2011 viruses were amplified by RT-PCR. Multibasic amino acid cleavage site of HA was removed and ligated into the pCIpoll vector for virus rescue. The recombinant viruses were evaluated by trypsin dependent assays. Their embnjonate survival and antigenicity were compared with those of the respective wild-type viruses. Results The 4 recombinant viruses showed similar antigenicity compared with wild-type viruses, chicken embryo survival and trypsin-dependent characteristics. Conclusion The 4 recombinant viruses rescued using reverse genetics meet the criteria for classification of low pathogenic avian influenza strains, thus supporting the use of them for the development of seeds and production of pre-pandemic vaccines.
基金Supported by Shandong Winning Project of Quality Monitoring of Avian Influenza Vaccine
文摘To study the immune effect of recombinant avian influenza virus H5 subtype bivalent inactivated vaccine ( HSN1, Re-6 strain + Re-4 strain) and to provide the basis for formulating reasonable immune procedure of avian influenza vaccine in clinical practice. A total of 12 batches of vaccines from three companies were used for the iannune of SPF chickens and SPF ducks. Each chicken or duck serum was separately collected every 3 weeks until the immunization up to the 24^th week. The serum antibody titers of Re-6 and Re-4 were detected. The results showed that the HI titers of the inoculated SPF chickens and SPF ducks roached the peak when the immune time were the 6^th and 3^rd week after the first immunization respectively; then the titer decreased gradually as time prolonged; the highest titer of SPF chickens was greater than that of SPF ducks; the high titer duration of SPF chickens were longer than that of SPF ducks ; and all the vaccines from the three companies showed a good immune effect.
文摘Background: There have been no reported studies involving aerosol immunization with 2 of the 3 components of MMR II vaccine—Attenuvax measles vaccine and Jeryl-Lyn mumps vaccine. Objective: To evaluate the safety and antibody responses to aerosolized Attenuvax measles strain, Jeryl Lynn mumps strain and RA 27/3 rubella component of an MMR vaccine in adults, before assessing the booster administration of this vaccine in children. Methods: A pilot study to evaluate safety and antibody responses of MMR II (Merch Sharp & Dhome Corp., Whitehouse Station, NJ 08889, USA) components administered by aerosol was carried out in 27 healthy adults of 21 to 38 years of age. All participants were followed-up during 28 days following immunization for detection of clinical adverse events. Immune response was evaluated by plaque reduction neutralization test for measles, and commercial ELISA kits for rubella and mumps. Results: Only mild clinical adverse events were noted. Despite high levels of baseline seropositivity to all vaccine components, seroresponses to measles, rubella and mumps occurred in 44%, 15% and 41%, respectively. Conclusions: These outcomes compare favorably with earlier studies of other MMR vaccines given by aerosol. Further evaluations on safety and booster immune response should be performed in children.