This paper proposes a PCA and KPCA self-fusion based MSTAR SAR automatic target recognition algorithm. This algorithm combines the linear feature extracted from principal component analysis (PCA) and nonlinear featu...This paper proposes a PCA and KPCA self-fusion based MSTAR SAR automatic target recognition algorithm. This algorithm combines the linear feature extracted from principal component analysis (PCA) and nonlinear feature extracted from kernel principal component analysis (KPCA) respectively, and then utilizes the adaptive feature fusion algorithm which is based on the weighted maximum margin criterion (WMMC) to fuse the features in order to achieve better performance. The linear regression classifier is used in the experiments. The experimental results indicate that the proposed self-fusion algorithm achieves higher recognition rate compared with the traditional PCA and KPCA feature fusion algorithms.展开更多
The mixture of factor analyzers (MFA) can accurately describe high resolution range profile (HRRP) statistical charac- teristics. But how to determine the proper number of the models is a problem. This paper devel...The mixture of factor analyzers (MFA) can accurately describe high resolution range profile (HRRP) statistical charac- teristics. But how to determine the proper number of the models is a problem. This paper develops a variational Bayesian mixture of factor analyzers (VBMFA) model. This procedure can obtain a lower bound on the Bayesian integral using the Jensen's inequality. An analytical solution of the Bayesian integral could be obtained by a hypothesis that latent variables in the model are indepen- dent. During computing the parameters of the model, birth-death moves are utilized to determine the optimal number of model au- tomatically. Experimental results for measured data show that the VBMFA method has better recognition performance than FA and MFA method.展开更多
Radar high-resolution range profile (HRRP) has received intensive attention from the radar automatic target recognition (RATR) community. Usually, since the initial phase of a complex HRRP is strongly sensitive to...Radar high-resolution range profile (HRRP) has received intensive attention from the radar automatic target recognition (RATR) community. Usually, since the initial phase of a complex HRRP is strongly sensitive to target position variation, which is referred to as the initial phase sensitivity in this paper, only the amplitude information in the complex HRRP, called the real HRRP in this paper, is used for RATR, whereas the phase information is discarded. However, the remaining phase information except for initial phases in the complex HRRP also contains valuable target discriminant information. This paper proposes a novel feature extraction method for the complex HRRP. The extracted complex feature vector, referred to as the complex feature vector with difference phases, contains the difference phase information between range cells but no initial phase information in the complex HRRR According to the scattering center model, the physical mechanism of the proposed complex feature vector is similar to that of the real HRRP, except for reserving some phase information independent of the initial phase in the complex HRRP. The recognition algorithms, frame-template establishment methods and preprocessing methods used in the real HRRP-based RATR can also be applied to the proposed complex feature vector-based RATR. Moreover, the components in the complex feature vector with difference phases approximate to follow Gaussian distribution, which make it simple to perform the statistical recognition by such complex feature vector. The recognition experiments based on measured data show that the proposed complex feature vector can obtain better recognition performance than the real HRRP if only the cell interval parameters are properly selected.展开更多
Synthetic aperture radar(SAR) automatic target recognition is an important application in SAR.How to extract features has restricted the application of SAR technology seriously.In this paper,a new feature extraction m...Synthetic aperture radar(SAR) automatic target recognition is an important application in SAR.How to extract features has restricted the application of SAR technology seriously.In this paper,a new feature extraction method for SAR automatic target recognition based on maximum interclass distance is proposed,which integrates class and neighborhood information.This method can reinforce discriminative power using maximum interclass distance,so it can improve recognition rate effectively.展开更多
Feature reduction is a key process in pattern recognition. This paper deals with the feature reduction methods for a time-shift invariant feature, power spectrum, in Radar Automatic Target Recognition (RATR) using Hig...Feature reduction is a key process in pattern recognition. This paper deals with the feature reduction methods for a time-shift invariant feature, power spectrum, in Radar Automatic Target Recognition (RATR) using High-Resolution Range Profiles (HRRPs). Several existing feature reduction methods in pattern recognition are analyzed, and a weighted feature reduction method based on Fisher's Discriminant Ratio (FDR) is proposed in this paper. According to the characteristics of radar HRRP target recognition, this proposed method searches the optimal weight vector for power spectra of HRRPs by means of an iterative algorithm, and thus reduces feature dimensionality. Compared with the method of using raw power spectra and some existing feature reduction methods, the weighted feature reduction method can not only reduce feature dimensionality, but also improve recognition performance with low computation complexity. In the recognition experiments based on measured data, the proposed method is robust to different test data and achieves good recognition results.展开更多
Due to the aspect sensitivity of high-resolution range profile(HRRP),traditional radar HRRP target recognition methods usually use average profile within some target-aspect region as the target-aspect template.Actuall...Due to the aspect sensitivity of high-resolution range profile(HRRP),traditional radar HRRP target recognition methods usually use average profile within some target-aspect region as the target-aspect template.Actually,the amplitude fluctuation property of target HRRP also represents some feature information of the target.Based on the scattering center model,a new feature extraction method using the amplitude fluctuation property of target HRRP is proposed in this paper.The weighted HRRP feature extracted by the new method can represent the scatterer distribution in every range cell,thereby it can describe the scattering property of the target better.The experimental results based on measured data show that the new feature extraction method can greatly improve recognition performances.展开更多
Template database is the key to radar automation target recognition based on High Resolution Range Profile (HRRP). From the traditional perspective, average HRRP is a valid template for it can represent each HRRP with...Template database is the key to radar automation target recognition based on High Resolution Range Profile (HRRP). From the traditional perspective, average HRRP is a valid template for it can represent each HRRP without scatterer Moving Through Range Cell (MTRC). However, template database based on this assumption is always challenged by measured data. One reason is that speckle happens in the frame without scatterer MTRC. Speckle makes HRRP fluctuate sharply and not match well with the average HRRP. We precisely introduce the formation mechanism of speckle. Then, we make an insight into the principle of matching score. Based on the conclusion, we study the properties of matching score between speckled HRRP and the average HRRP. The theoretical analysis and Monte Carlo experimental results demonstrate that speckle makes HRRP not to match well with the average HRRP according to the energy ratio of speckled scatterers. On the assumption of ideal scattering centre model, speckled HRRP has a matching score less than 85% with the average HRRP if speckled scatterers occupy more than 50% energy of the target.展开更多
The normalized central moments are widely used in pattern recognition because of scale and translation invariance. The moduli of normalized central moments of the 1-dimensional complex range profiles are used here as ...The normalized central moments are widely used in pattern recognition because of scale and translation invariance. The moduli of normalized central moments of the 1-dimensional complex range profiles are used here as feature vector for radar target recognition. The common feature extraction method for high resolution range profile obtained by using Fourier-modified direct Mellin transform is inefficient and unsatisfactory in recognition rate And. generally speaking, the automatic target recognition method based on inverse synthetic aperture radar 2-dimensional imaging is not competent for real time object identification task because it needs complicated motion compensation which is sometimes too difficult to carry out. While the method applied here is competent for real-time recognition because of its computational efficiency. The result of processing experimental data indicates that this method is good at recognition.展开更多
Radar high-resolution range profiles(HRRPs)are typical high-dimensional and interdimension dependently distributed data,the statistical modeling of which is a challenging task for HRRP-based target recognition.Supposi...Radar high-resolution range profiles(HRRPs)are typical high-dimensional and interdimension dependently distributed data,the statistical modeling of which is a challenging task for HRRP-based target recognition.Supposing that HRRP samples are independent and jointly Gaussian distributed,a recent work[Du L,Liu H W,Bao Z.IEEE Transactions on Signal Processing,2008,56(5):1931–1944]applied factor analysis(FA)to model HRRP data with a two-phase approach for model selection,which achieved satisfactory recognition performance.The theoretical analysis and experimental results reveal that there exists high temporal correlation among adjacent HRRPs.This paper is thus motivated to model the spatial and temporal structure of HRRP data simultaneously by employing temporal factor analysis(TFA)model.For a limited size of high-dimensional HRRP data,the two-phase approach for parameter learning and model selection suffers from intensive computation burden and deteriorated evaluation.To tackle these problems,this work adopts the Bayesian Ying-Yang(BYY)harmony learning that has automatic model selection ability during parameter learning.Experimental results show stepwise improved recognition and rejection performances from the twophase learning based FA,to the two-phase learning based TFA and to the BYY harmony learning based TFA with automatic model selection.In addition,adding many extra free parameters to the classic FA model and thus becoming even worse in identifiability,the model of a general linear dynamical system is even inferior to the classic FA model.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant No. 61033012, No. 611003177, and No. 61070181Fundamental Research Funds for the Central Universities under Grant No.1600-852016 and No. DUT12JR07
文摘This paper proposes a PCA and KPCA self-fusion based MSTAR SAR automatic target recognition algorithm. This algorithm combines the linear feature extracted from principal component analysis (PCA) and nonlinear feature extracted from kernel principal component analysis (KPCA) respectively, and then utilizes the adaptive feature fusion algorithm which is based on the weighted maximum margin criterion (WMMC) to fuse the features in order to achieve better performance. The linear regression classifier is used in the experiments. The experimental results indicate that the proposed self-fusion algorithm achieves higher recognition rate compared with the traditional PCA and KPCA feature fusion algorithms.
基金supported in part by the National Natural Science Foundation of China(60772140)the Program for Cheung Kong Scholarsand Innovative Research Team in University(IRT0645)
文摘The mixture of factor analyzers (MFA) can accurately describe high resolution range profile (HRRP) statistical charac- teristics. But how to determine the proper number of the models is a problem. This paper develops a variational Bayesian mixture of factor analyzers (VBMFA) model. This procedure can obtain a lower bound on the Bayesian integral using the Jensen's inequality. An analytical solution of the Bayesian integral could be obtained by a hypothesis that latent variables in the model are indepen- dent. During computing the parameters of the model, birth-death moves are utilized to determine the optimal number of model au- tomatically. Experimental results for measured data show that the VBMFA method has better recognition performance than FA and MFA method.
基金the National Natural Science Foundation of China(Grant No.60302009)the National Defense Advanced Research Foundation of China(Grant No.413070501)
文摘Radar high-resolution range profile (HRRP) has received intensive attention from the radar automatic target recognition (RATR) community. Usually, since the initial phase of a complex HRRP is strongly sensitive to target position variation, which is referred to as the initial phase sensitivity in this paper, only the amplitude information in the complex HRRP, called the real HRRP in this paper, is used for RATR, whereas the phase information is discarded. However, the remaining phase information except for initial phases in the complex HRRP also contains valuable target discriminant information. This paper proposes a novel feature extraction method for the complex HRRP. The extracted complex feature vector, referred to as the complex feature vector with difference phases, contains the difference phase information between range cells but no initial phase information in the complex HRRR According to the scattering center model, the physical mechanism of the proposed complex feature vector is similar to that of the real HRRP, except for reserving some phase information independent of the initial phase in the complex HRRP. The recognition algorithms, frame-template establishment methods and preprocessing methods used in the real HRRP-based RATR can also be applied to the proposed complex feature vector-based RATR. Moreover, the components in the complex feature vector with difference phases approximate to follow Gaussian distribution, which make it simple to perform the statistical recognition by such complex feature vector. The recognition experiments based on measured data show that the proposed complex feature vector can obtain better recognition performance than the real HRRP if only the cell interval parameters are properly selected.
基金supported in part by the National High-tech Research and Development Program("863"Program)of China(Grant No.2009AA12Z106)
文摘Synthetic aperture radar(SAR) automatic target recognition is an important application in SAR.How to extract features has restricted the application of SAR technology seriously.In this paper,a new feature extraction method for SAR automatic target recognition based on maximum interclass distance is proposed,which integrates class and neighborhood information.This method can reinforce discriminative power using maximum interclass distance,so it can improve recognition rate effectively.
基金Partially supported by the National Natural Science Foundation of China (No.60302009)the National Defense Advanced Research Foundation of China (No.413070501).
文摘Feature reduction is a key process in pattern recognition. This paper deals with the feature reduction methods for a time-shift invariant feature, power spectrum, in Radar Automatic Target Recognition (RATR) using High-Resolution Range Profiles (HRRPs). Several existing feature reduction methods in pattern recognition are analyzed, and a weighted feature reduction method based on Fisher's Discriminant Ratio (FDR) is proposed in this paper. According to the characteristics of radar HRRP target recognition, this proposed method searches the optimal weight vector for power spectra of HRRPs by means of an iterative algorithm, and thus reduces feature dimensionality. Compared with the method of using raw power spectra and some existing feature reduction methods, the weighted feature reduction method can not only reduce feature dimensionality, but also improve recognition performance with low computation complexity. In the recognition experiments based on measured data, the proposed method is robust to different test data and achieves good recognition results.
基金supported by the National Science Foundation of China(No.60302009)the National Defense Preresearch Foundation of China(No.41307501).
文摘Due to the aspect sensitivity of high-resolution range profile(HRRP),traditional radar HRRP target recognition methods usually use average profile within some target-aspect region as the target-aspect template.Actually,the amplitude fluctuation property of target HRRP also represents some feature information of the target.Based on the scattering center model,a new feature extraction method using the amplitude fluctuation property of target HRRP is proposed in this paper.The weighted HRRP feature extracted by the new method can represent the scatterer distribution in every range cell,thereby it can describe the scattering property of the target better.The experimental results based on measured data show that the new feature extraction method can greatly improve recognition performances.
文摘Template database is the key to radar automation target recognition based on High Resolution Range Profile (HRRP). From the traditional perspective, average HRRP is a valid template for it can represent each HRRP without scatterer Moving Through Range Cell (MTRC). However, template database based on this assumption is always challenged by measured data. One reason is that speckle happens in the frame without scatterer MTRC. Speckle makes HRRP fluctuate sharply and not match well with the average HRRP. We precisely introduce the formation mechanism of speckle. Then, we make an insight into the principle of matching score. Based on the conclusion, we study the properties of matching score between speckled HRRP and the average HRRP. The theoretical analysis and Monte Carlo experimental results demonstrate that speckle makes HRRP not to match well with the average HRRP according to the energy ratio of speckled scatterers. On the assumption of ideal scattering centre model, speckled HRRP has a matching score less than 85% with the average HRRP if speckled scatterers occupy more than 50% energy of the target.
文摘The normalized central moments are widely used in pattern recognition because of scale and translation invariance. The moduli of normalized central moments of the 1-dimensional complex range profiles are used here as feature vector for radar target recognition. The common feature extraction method for high resolution range profile obtained by using Fourier-modified direct Mellin transform is inefficient and unsatisfactory in recognition rate And. generally speaking, the automatic target recognition method based on inverse synthetic aperture radar 2-dimensional imaging is not competent for real time object identification task because it needs complicated motion compensation which is sometimes too difficult to carry out. While the method applied here is competent for real-time recognition because of its computational efficiency. The result of processing experimental data indicates that this method is good at recognition.
文摘特征提取是合成孔径雷达(synthetic aperture radar,SAR)图像自动识别与分类中的重要环节.由于SAR图像有相干斑噪声及几何畸变等特性,一般网络模型难以提取到有判别性的特征.为增强特征提取能力,提高分类准确率,提出将注意力机制与胶囊网络结合的一种注意力胶囊网络模型.注意力机制可聚焦寻找具有重要局部信息的特征,在图像识别过程中抑制干扰特征,定位重要特征.胶囊网络可捕捉图像中目标的位置与空间关系,使提取到的SAR图像特征含有更多便于分类的重要信息.结果表明:文中方法对SAR图像分类数据集中运动和静止目标的获取与识别(moving and stationary target acquisition and recognition,MSTAR)有显著效果.
基金The work described in this paper was supported by a grant of the General Research Fund(GRF)from the Research Grant Council of the Hong Kong SAR(No.CUHK4180/10E)the National Natural Science Foundation of China(Grant Nos.60901067 and 61001212)+1 种基金Program for New Century Excellent Talents in University(No.NCET-09-0630)Program for Changjiang Scholars and Innovative Research Team in University(No.IRT0954),and the Fundamental Research Funds for the Central Universities.
文摘Radar high-resolution range profiles(HRRPs)are typical high-dimensional and interdimension dependently distributed data,the statistical modeling of which is a challenging task for HRRP-based target recognition.Supposing that HRRP samples are independent and jointly Gaussian distributed,a recent work[Du L,Liu H W,Bao Z.IEEE Transactions on Signal Processing,2008,56(5):1931–1944]applied factor analysis(FA)to model HRRP data with a two-phase approach for model selection,which achieved satisfactory recognition performance.The theoretical analysis and experimental results reveal that there exists high temporal correlation among adjacent HRRPs.This paper is thus motivated to model the spatial and temporal structure of HRRP data simultaneously by employing temporal factor analysis(TFA)model.For a limited size of high-dimensional HRRP data,the two-phase approach for parameter learning and model selection suffers from intensive computation burden and deteriorated evaluation.To tackle these problems,this work adopts the Bayesian Ying-Yang(BYY)harmony learning that has automatic model selection ability during parameter learning.Experimental results show stepwise improved recognition and rejection performances from the twophase learning based FA,to the two-phase learning based TFA and to the BYY harmony learning based TFA with automatic model selection.In addition,adding many extra free parameters to the classic FA model and thus becoming even worse in identifiability,the model of a general linear dynamical system is even inferior to the classic FA model.