Reduction of the radar cross-section(RCS) is the key to stealth technology. To improve the RCS reduction effect of the designed checkerboard metasurface and overcome the limitation of thinlayer plasma in RCS reduction...Reduction of the radar cross-section(RCS) is the key to stealth technology. To improve the RCS reduction effect of the designed checkerboard metasurface and overcome the limitation of thinlayer plasma in RCS reduction technology, a double-layer-plasma-based metasurface—composed of a checkerboard metasurface, a double-layer plasma and an air gap between them—was investigated. Based on the principle of backscattering cancellation, we designed a checkerboard metasurface composed of different artificial magnetic conductor units;the checkerboard metasurface can reflect vertically incident electromagnetic(EM) waves in four different inclined directions to reduce the RCS. Full-wave simulations confirm that the doublelayer-plasma-based metasurface can improve the RCS reduction effect of the metasurface and the plasma. This is because in a band lower than the working band of the metasurface, the RCS reduction effect is mainly improved by the plasma layer. In the working band of the metasurface,impedance mismatching between the air gap and first plasma layer and between first and second plasma layers cause the scattered waves to become more dispersed, so the propagation path of the EM waves in the plasma becomes longer, increasing the absorption of the EM waves by the plasma. Thus, the RCS reduction effect is enhanced. The double-layer-plasma-based metasurface can be insensitive to the polarization of the incoming EM waves, and can also maintain a satisfactory RCS reduction band when the incident waves are oblique.展开更多
An ultra-wideband 2-bit coding metasurface is designed for radar cross-section(RCS) reduction. The design process is presented in detail, in which a polarization conversion metasurface(PCM) is first proposed. The prop...An ultra-wideband 2-bit coding metasurface is designed for radar cross-section(RCS) reduction. The design process is presented in detail, in which a polarization conversion metasurface(PCM) is first proposed. The proposed PCM can realize ultra-wideband circular polarization(CP) maintaining reflection. Moreover, Pancharatnam–Berry(PB) phase will be generated in the co-polarized reflection coefficient by rotating the metallic patches in its unit cells. Thus, based on the PCM, the four coding elements of a 2-bit coding metasurface are constructed using PB phase, and an ultra-wideband PB 2-bit coding metasurface is proposed according to an appropriate coding sequence. The simulated and experimental results show that the coding metasurface has obvious advantages of wideband and polarization-insensitivity. Compared to a metallic plate of the same size, it can achieve more than 10 dB RCS reduction in the frequency band from 9.8 GHz to 42.6 GHz with a relative bandwidth of 125.2% under normal incidence with arbitrary polarizations.展开更多
The present paper deals with the method for the radar cross-section (RCS)computations of arbitrarily complicated targets based on the work by D. Klement et al.(1988).This method is convenient in use, fast in operatio...The present paper deals with the method for the radar cross-section (RCS)computations of arbitrarily complicated targets based on the work by D. Klement et al.(1988).This method is convenient in use, fast in operation and precise in calculating RCS of a complicatedtarget. With this method, the RCS of classic scatterers, for example, a cone and a cylinder, arecomputed with the result of good agreement with experimental data. Furthermore, the RCS’of an aircraft model at various attitudes are calculated with the result of good agreement withexperimental data also.展开更多
A new method called multi-frequency holography (MFH) for two-dimensional radar cross-section imaging of rotating objects is introduced, in which a constant coherent reference signal from transmitted signal is added in...A new method called multi-frequency holography (MFH) for two-dimensional radar cross-section imaging of rotating objects is introduced, in which a constant coherent reference signal from transmitted signal is added into received signal over certain frequency-width. With the MFH only the intensity of received composite signals needs to be measured. Both imaging situations of far field and near field are considered in details. Special restrictions about the MFH are also discussed and simulated by numerical computation. Examples of numerical simulation show that the method is effective, applicable and perspective.展开更多
Taking into account the influences of scatterer geometrical shapes on induced currents, an algorithm, termed the sparse-matrix method (SMM), is proposed to calculate radar cross section (RCS) of aircraft configura...Taking into account the influences of scatterer geometrical shapes on induced currents, an algorithm, termed the sparse-matrix method (SMM), is proposed to calculate radar cross section (RCS) of aircraft configuration. Based on the geometrical characteristics and the method of moment (MOM), the SMM points out that the strong current coupling zone could be predefined according to the shape of scatterers. Two geometrical parameters, the surface curvature and the electrical space between the field position and source position, are deducted to distinguish the dominant current coupling. Then the strong current coupling is computed to construct an impedance matrix having sparse nature, which is solved to compute RCS. The efficiency and feasibility of the SMM are demonstrated by computing electromagnetic scattering of some kinds of shapes such as a cone-sphere with a gap, a bi-arc column and a stealth aircraft configuration. The numerical results show that: (1) the accuracy of SMM is satisfied, as compared with MOM, and the computational time it spends is only about 8% of the MOM; (2) with the electrical space considered, making another allowance for the surface curvature can reduce the computation time by 9.5%.展开更多
高精度雷达散射截面(RCS)测量对背景环境具有较高要求,当背景环境存在较强干扰时,通过背景矢量对消难以消除杂波影响。提出基于成像提取的高精度RCS测量方法,从背景杂波中分离和提取出目标的散射信号,从而提高了测量的精度。首先推导了...高精度雷达散射截面(RCS)测量对背景环境具有较高要求,当背景环境存在较强干扰时,通过背景矢量对消难以消除杂波影响。提出基于成像提取的高精度RCS测量方法,从背景杂波中分离和提取出目标的散射信号,从而提高了测量的精度。首先推导了像与RCS的数学关系,然后利用转台模式下的测量回波进行成像处理,得到目标区域的二维像;从成像区域中提取目标的二维像,通过波谱变换和定标获得目标的RCS。仿真结果表明,该方法对于具有干扰情况下的RCS测量,可以改善3~5 d B的测试精度,并且能够对弱散射目标进行测量。实验结果表明了成像提取方法的有效性和准确性。展开更多
基金supported in part by the China Postdoctoral Science Foundation (No. 2020M673341)in part by the Natural Science Basic Research Program of Shaanxi (No.2023-JC-YB-549)+1 种基金in part by National Natural Science Foundation of China (Nos. 62371375 and 62371372)Innovation Capability Support Program of Shaanxi (No. 2022TD-37)。
文摘Reduction of the radar cross-section(RCS) is the key to stealth technology. To improve the RCS reduction effect of the designed checkerboard metasurface and overcome the limitation of thinlayer plasma in RCS reduction technology, a double-layer-plasma-based metasurface—composed of a checkerboard metasurface, a double-layer plasma and an air gap between them—was investigated. Based on the principle of backscattering cancellation, we designed a checkerboard metasurface composed of different artificial magnetic conductor units;the checkerboard metasurface can reflect vertically incident electromagnetic(EM) waves in four different inclined directions to reduce the RCS. Full-wave simulations confirm that the doublelayer-plasma-based metasurface can improve the RCS reduction effect of the metasurface and the plasma. This is because in a band lower than the working band of the metasurface, the RCS reduction effect is mainly improved by the plasma layer. In the working band of the metasurface,impedance mismatching between the air gap and first plasma layer and between first and second plasma layers cause the scattered waves to become more dispersed, so the propagation path of the EM waves in the plasma becomes longer, increasing the absorption of the EM waves by the plasma. Thus, the RCS reduction effect is enhanced. The double-layer-plasma-based metasurface can be insensitive to the polarization of the incoming EM waves, and can also maintain a satisfactory RCS reduction band when the incident waves are oblique.
基金Project supported by the National Natural Science Foundation of China (Grant No. 62072378)the Natural Science Foundation of Shaanxi Province, China (Grant No. 2019JM077)the Xi’an Science and Technology Plan Project, China (Grant No. GXYD20.4)。
文摘An ultra-wideband 2-bit coding metasurface is designed for radar cross-section(RCS) reduction. The design process is presented in detail, in which a polarization conversion metasurface(PCM) is first proposed. The proposed PCM can realize ultra-wideband circular polarization(CP) maintaining reflection. Moreover, Pancharatnam–Berry(PB) phase will be generated in the co-polarized reflection coefficient by rotating the metallic patches in its unit cells. Thus, based on the PCM, the four coding elements of a 2-bit coding metasurface are constructed using PB phase, and an ultra-wideband PB 2-bit coding metasurface is proposed according to an appropriate coding sequence. The simulated and experimental results show that the coding metasurface has obvious advantages of wideband and polarization-insensitivity. Compared to a metallic plate of the same size, it can achieve more than 10 dB RCS reduction in the frequency band from 9.8 GHz to 42.6 GHz with a relative bandwidth of 125.2% under normal incidence with arbitrary polarizations.
文摘The present paper deals with the method for the radar cross-section (RCS)computations of arbitrarily complicated targets based on the work by D. Klement et al.(1988).This method is convenient in use, fast in operation and precise in calculating RCS of a complicatedtarget. With this method, the RCS of classic scatterers, for example, a cone and a cylinder, arecomputed with the result of good agreement with experimental data. Furthermore, the RCS’of an aircraft model at various attitudes are calculated with the result of good agreement withexperimental data also.
文摘A new method called multi-frequency holography (MFH) for two-dimensional radar cross-section imaging of rotating objects is introduced, in which a constant coherent reference signal from transmitted signal is added into received signal over certain frequency-width. With the MFH only the intensity of received composite signals needs to be measured. Both imaging situations of far field and near field are considered in details. Special restrictions about the MFH are also discussed and simulated by numerical computation. Examples of numerical simulation show that the method is effective, applicable and perspective.
基金National Natural Science Foundation of China (90205020)
文摘Taking into account the influences of scatterer geometrical shapes on induced currents, an algorithm, termed the sparse-matrix method (SMM), is proposed to calculate radar cross section (RCS) of aircraft configuration. Based on the geometrical characteristics and the method of moment (MOM), the SMM points out that the strong current coupling zone could be predefined according to the shape of scatterers. Two geometrical parameters, the surface curvature and the electrical space between the field position and source position, are deducted to distinguish the dominant current coupling. Then the strong current coupling is computed to construct an impedance matrix having sparse nature, which is solved to compute RCS. The efficiency and feasibility of the SMM are demonstrated by computing electromagnetic scattering of some kinds of shapes such as a cone-sphere with a gap, a bi-arc column and a stealth aircraft configuration. The numerical results show that: (1) the accuracy of SMM is satisfied, as compared with MOM, and the computational time it spends is only about 8% of the MOM; (2) with the electrical space considered, making another allowance for the surface curvature can reduce the computation time by 9.5%.
文摘高精度雷达散射截面(RCS)测量对背景环境具有较高要求,当背景环境存在较强干扰时,通过背景矢量对消难以消除杂波影响。提出基于成像提取的高精度RCS测量方法,从背景杂波中分离和提取出目标的散射信号,从而提高了测量的精度。首先推导了像与RCS的数学关系,然后利用转台模式下的测量回波进行成像处理,得到目标区域的二维像;从成像区域中提取目标的二维像,通过波谱变换和定标获得目标的RCS。仿真结果表明,该方法对于具有干扰情况下的RCS测量,可以改善3~5 d B的测试精度,并且能够对弱散射目标进行测量。实验结果表明了成像提取方法的有效性和准确性。