Reduction of the radar cross-section(RCS) is the key to stealth technology. To improve the RCS reduction effect of the designed checkerboard metasurface and overcome the limitation of thinlayer plasma in RCS reduction...Reduction of the radar cross-section(RCS) is the key to stealth technology. To improve the RCS reduction effect of the designed checkerboard metasurface and overcome the limitation of thinlayer plasma in RCS reduction technology, a double-layer-plasma-based metasurface—composed of a checkerboard metasurface, a double-layer plasma and an air gap between them—was investigated. Based on the principle of backscattering cancellation, we designed a checkerboard metasurface composed of different artificial magnetic conductor units;the checkerboard metasurface can reflect vertically incident electromagnetic(EM) waves in four different inclined directions to reduce the RCS. Full-wave simulations confirm that the doublelayer-plasma-based metasurface can improve the RCS reduction effect of the metasurface and the plasma. This is because in a band lower than the working band of the metasurface, the RCS reduction effect is mainly improved by the plasma layer. In the working band of the metasurface,impedance mismatching between the air gap and first plasma layer and between first and second plasma layers cause the scattered waves to become more dispersed, so the propagation path of the EM waves in the plasma becomes longer, increasing the absorption of the EM waves by the plasma. Thus, the RCS reduction effect is enhanced. The double-layer-plasma-based metasurface can be insensitive to the polarization of the incoming EM waves, and can also maintain a satisfactory RCS reduction band when the incident waves are oblique.展开更多
This resolution 5 (25−1 factorial) study aimed to ascertain an understanding of the interactions between different geometries on the resulting Radar Cross Section (RCS) of a target. The results of the study are in lin...This resolution 5 (25−1 factorial) study aimed to ascertain an understanding of the interactions between different geometries on the resulting Radar Cross Section (RCS) of a target. The results of the study are in line with the general understanding of the impact different geometries have on RCS but show that geometries can also influence the variance of measured RCS, and typical attributes that reduce RCS increase the variance of the measured RCS. Notably, an increased angle between the front face of a plate and the direction of the radar signal decreased RCS but increased the variance of the RCS measured.展开更多
现代谱估计方法能够反演基于几何绕射理论(geometric theory of diffraction,GTD)的模型参数,但不能处理非均匀不完备的雷达散射截面(radar cross section,RCS)数据。此外,通过暗室测量获取完备的RCS数据也需要较大的时空开销。针对上...现代谱估计方法能够反演基于几何绕射理论(geometric theory of diffraction,GTD)的模型参数,但不能处理非均匀不完备的雷达散射截面(radar cross section,RCS)数据。此外,通过暗室测量获取完备的RCS数据也需要较大的时空开销。针对上述问题,提出一种基于迭代加权最小二乘(iteratively reweighed least squares,IRLS)的跳频模式下GTD散射参数提取和RCS重构方法。该方法将稀疏重构理论与GTD散射模型相结合,能够在RCS数据非均匀不完备的条件下反演散射参数和实现RCS重构。仿真数据和电磁计算数据用于验证所提方法的有效性,实验结果表明该方法对降低暗室步进频率RCS的测量成本和扩增雷达RCS数据具有重要意义。展开更多
基金supported in part by the China Postdoctoral Science Foundation (No. 2020M673341)in part by the Natural Science Basic Research Program of Shaanxi (No.2023-JC-YB-549)+1 种基金in part by National Natural Science Foundation of China (Nos. 62371375 and 62371372)Innovation Capability Support Program of Shaanxi (No. 2022TD-37)。
文摘Reduction of the radar cross-section(RCS) is the key to stealth technology. To improve the RCS reduction effect of the designed checkerboard metasurface and overcome the limitation of thinlayer plasma in RCS reduction technology, a double-layer-plasma-based metasurface—composed of a checkerboard metasurface, a double-layer plasma and an air gap between them—was investigated. Based on the principle of backscattering cancellation, we designed a checkerboard metasurface composed of different artificial magnetic conductor units;the checkerboard metasurface can reflect vertically incident electromagnetic(EM) waves in four different inclined directions to reduce the RCS. Full-wave simulations confirm that the doublelayer-plasma-based metasurface can improve the RCS reduction effect of the metasurface and the plasma. This is because in a band lower than the working band of the metasurface, the RCS reduction effect is mainly improved by the plasma layer. In the working band of the metasurface,impedance mismatching between the air gap and first plasma layer and between first and second plasma layers cause the scattered waves to become more dispersed, so the propagation path of the EM waves in the plasma becomes longer, increasing the absorption of the EM waves by the plasma. Thus, the RCS reduction effect is enhanced. The double-layer-plasma-based metasurface can be insensitive to the polarization of the incoming EM waves, and can also maintain a satisfactory RCS reduction band when the incident waves are oblique.
文摘This resolution 5 (25−1 factorial) study aimed to ascertain an understanding of the interactions between different geometries on the resulting Radar Cross Section (RCS) of a target. The results of the study are in line with the general understanding of the impact different geometries have on RCS but show that geometries can also influence the variance of measured RCS, and typical attributes that reduce RCS increase the variance of the measured RCS. Notably, an increased angle between the front face of a plate and the direction of the radar signal decreased RCS but increased the variance of the RCS measured.
文摘现代谱估计方法能够反演基于几何绕射理论(geometric theory of diffraction,GTD)的模型参数,但不能处理非均匀不完备的雷达散射截面(radar cross section,RCS)数据。此外,通过暗室测量获取完备的RCS数据也需要较大的时空开销。针对上述问题,提出一种基于迭代加权最小二乘(iteratively reweighed least squares,IRLS)的跳频模式下GTD散射参数提取和RCS重构方法。该方法将稀疏重构理论与GTD散射模型相结合,能够在RCS数据非均匀不完备的条件下反演散射参数和实现RCS重构。仿真数据和电磁计算数据用于验证所提方法的有效性,实验结果表明该方法对降低暗室步进频率RCS的测量成本和扩增雷达RCS数据具有重要意义。