某些垃圾填埋场由于相关资料严重缺失,给污染物的治理工作带来了困难。为了解决老垃圾填埋场的污染物治理问题,将高密度电法和探地雷达法相结合,对某村老垃圾填埋场进行了全方位探查,取得了以下成果:1)成功识别出垃圾与原位土层的界线,...某些垃圾填埋场由于相关资料严重缺失,给污染物的治理工作带来了困难。为了解决老垃圾填埋场的污染物治理问题,将高密度电法和探地雷达法相结合,对某村老垃圾填埋场进行了全方位探查,取得了以下成果:1)成功识别出垃圾与原位土层的界线,得到了垃圾层的范围和厚度,并以此为基础计算出回填方量为132454 m ^(3),为污染物的清除和治理提供了重要的参考;2)依据电阻率的分布,划分出填埋物的种类主要为建筑垃圾、生活垃圾或者粪便;3)识别出垃圾渗液的污染范围,圈定需要隔绝污染和回收清洁土壤的位置。本次研究结果为今后的垃圾治理工作提供了重要的参考。展开更多
A comprehensive Ground Penetration Radar (GPR) investigations and hazard assessment for the rehabilitation and strengthening of Habib Sakakini’s Palace in Cairo is presented herein, which is considered one of the mos...A comprehensive Ground Penetration Radar (GPR) investigations and hazard assessment for the rehabilitation and strengthening of Habib Sakakini’s Palace in Cairo is presented herein, which is considered one of the most significant architectural heritage sites in Egypt. The palace located on an ancient water pond at the eastern side of Egyptian gulf besiding Sultan Bebris Al-Bondoqdary mosque is a place also called “Prince Qraja al-Turkumany pond”. That pond had been filled down by Habib Sakakini at 1892 to construct his famous palace in 1897. The integrated geophysical survey of the palace allowed the identification of several targets of potential archaeological and geotechnical engineering interest buried in fill and silty clay in the depth range between 100 - 700 cm. the methodological development focused on Multi-Fold (MF) Ground Penetrating Radar (GPR) imaging and subsurface characterization based on integrated velocity and attenuation analysis. Eight hundred sqm of Ground penetration Radar (GPR) profiling have been conducted to monitor the subsurface conditions. 600 meters are made in the surrounding area of the Palace and 200 sqm at the basement. The aim is to monitor the soil conditions beneath and around the Palace and to identify potential geological discontinuities, or the presence of faults and cavities. A suitable single and dual antenna are used (500 - 100 MHZ) is used to penetrate the desired depth of 7 meters (ASTM D6432). The GPR is used also detect the water table. At the building basement the GPR is used to identify the foundation thickness and soil-basement interface. As well as the inspection of cracks in some supporting columns, piers and masonry walls. The GPR also was used to investigate the floors and ceilings conditions and structural mapping. The results were validated by the geotechnical and structural surveys. All these results together with the seismic hazard analysis will be used for the complete analysis of the palace in the framework of the rehabilitation and strengthening works foreseen in a second stage.展开更多
文摘某些垃圾填埋场由于相关资料严重缺失,给污染物的治理工作带来了困难。为了解决老垃圾填埋场的污染物治理问题,将高密度电法和探地雷达法相结合,对某村老垃圾填埋场进行了全方位探查,取得了以下成果:1)成功识别出垃圾与原位土层的界线,得到了垃圾层的范围和厚度,并以此为基础计算出回填方量为132454 m ^(3),为污染物的清除和治理提供了重要的参考;2)依据电阻率的分布,划分出填埋物的种类主要为建筑垃圾、生活垃圾或者粪便;3)识别出垃圾渗液的污染范围,圈定需要隔绝污染和回收清洁土壤的位置。本次研究结果为今后的垃圾治理工作提供了重要的参考。
文摘A comprehensive Ground Penetration Radar (GPR) investigations and hazard assessment for the rehabilitation and strengthening of Habib Sakakini’s Palace in Cairo is presented herein, which is considered one of the most significant architectural heritage sites in Egypt. The palace located on an ancient water pond at the eastern side of Egyptian gulf besiding Sultan Bebris Al-Bondoqdary mosque is a place also called “Prince Qraja al-Turkumany pond”. That pond had been filled down by Habib Sakakini at 1892 to construct his famous palace in 1897. The integrated geophysical survey of the palace allowed the identification of several targets of potential archaeological and geotechnical engineering interest buried in fill and silty clay in the depth range between 100 - 700 cm. the methodological development focused on Multi-Fold (MF) Ground Penetrating Radar (GPR) imaging and subsurface characterization based on integrated velocity and attenuation analysis. Eight hundred sqm of Ground penetration Radar (GPR) profiling have been conducted to monitor the subsurface conditions. 600 meters are made in the surrounding area of the Palace and 200 sqm at the basement. The aim is to monitor the soil conditions beneath and around the Palace and to identify potential geological discontinuities, or the presence of faults and cavities. A suitable single and dual antenna are used (500 - 100 MHZ) is used to penetrate the desired depth of 7 meters (ASTM D6432). The GPR is used also detect the water table. At the building basement the GPR is used to identify the foundation thickness and soil-basement interface. As well as the inspection of cracks in some supporting columns, piers and masonry walls. The GPR also was used to investigate the floors and ceilings conditions and structural mapping. The results were validated by the geotechnical and structural surveys. All these results together with the seismic hazard analysis will be used for the complete analysis of the palace in the framework of the rehabilitation and strengthening works foreseen in a second stage.