The simulation of radio frequency interference(RFI) cancellation by applying a spatial filtering technique for phased array feed(PAF) is presented. In order to better reflect the characteristics of PAF, a new signal m...The simulation of radio frequency interference(RFI) cancellation by applying a spatial filtering technique for phased array feed(PAF) is presented. In order to better reflect the characteristics of PAF, a new signal model is to add the coupling coefficient among elements of PAF to the conventional array signal model. Then the subspace projection(SP) algorithm is used to cancel RFI from the correlation matrix of the signal, and finally, the 2D power image is drawn. The power variation of signal-of-interest direction and RFI direction before and after using the SP algorithm is analyzed. The new signal model and simulation strategy can be used to test and verify the beamformer.展开更多
The receiver is a signal receiving device placed at the focus of the telescope.In order to improve the observation efficiency,the concept of phased array receiver has been proposed in recent years,which places a small...The receiver is a signal receiving device placed at the focus of the telescope.In order to improve the observation efficiency,the concept of phased array receiver has been proposed in recent years,which places a small phased array at the focal plane of the reflector,and flexible pattern and beam scanning functions can be achieved through a beamforming network.If combined with the element multiplexing,all beams within the entire field of view can be observed simultaneously to achieve continuous sky coverage.This article focuses on the front-end array of phased array receiver at 0.7-1.8 GHz for QiTai Telescope,and designs a Vivaldi antenna array of PCB structure with dual line polarization.Each polarization antenna is designed to arrange in a rectangle manner by 11×10.Based on the simulation results of the focal field,32,18,and eight elements were selected to form one beam at 0.7,1.25,and1.8 GHz.An analog beamforming network was constructed,and the measured gains of axial beam under uniform weighting were 19.32,13.72,and 15.22 dBi.Combining the beam scanning method of reflector antenna,the pattern test of different position element sets required for PAF beam scanning was carried out under independent array.The pattern optimization at 1.25 GHz was carried out by weighting method of conjugate field matching.Compared with uniform weighting,the gain,sidelobe level,and main beam direction under conjugate field matching have been improved.Although the above test and simulation results are slightly different,which is related to the passive array and laboratory testing condition,the relevant work has accumulated experience in the development of the front-end array for the phased array receiver,and has good guiding significance for future performance verification after the array is installed on the telescope.展开更多
Active surface technique is one of the key technologies to ensure the reflector accuracy of the millimeter/submillimeter wave large reflector antenna.The antenna is complex,large-scale,and high-precision equipment,and...Active surface technique is one of the key technologies to ensure the reflector accuracy of the millimeter/submillimeter wave large reflector antenna.The antenna is complex,large-scale,and high-precision equipment,and its active surfaces are affected by various factors that are difficult to comprehensively deal with.In this paper,based on the advantage of the deep learning method that can be improved through data learning,we propose the active adjustment value analysis method of large reflector antenna based on deep learning.This method constructs a neural network model for antenna active adjustment analysis in view of the fact that a large reflector antenna consists of multiple panels spliced together.Based on the constraint that a single actuator has to support multiple panels(usually 4),an autonomously learned neural network emphasis layer module is designed to enhance the adaptability of the active adjustment neural network model.The classical 8-meter antenna is used as a case study,the actuators have a mean adjustment error of 0.00252 mm,and the corresponding antenna surface error is0.00523 mm.This active adjustment result shows the effectiveness of the method in this paper.展开更多
To improve our understanding of the formation and evolution of the Moon, one of the payloads onboard the Chang'e-3 (CE-3) rover is Lunar Penetrating Radar (LPR). This investigation is the first attempt to explore...To improve our understanding of the formation and evolution of the Moon, one of the payloads onboard the Chang'e-3 (CE-3) rover is Lunar Penetrating Radar (LPR). This investigation is the first attempt to explore the lunar subsurface structure by using ground penetrating radar with high resolution. We have probed the subsur- face to a depth of several hundred meters using LPR. In-orbit testing, data processing and the preliminary results are presented. These observations have revealed the con- figuration of regolith where the thickness of regolith varies from about 4 m to 6 m. In addition, one layer of lunar rock, which is about 330 m deep and might have been accumulated during the depositional hiatus of mare basalts, was detected.展开更多
Lunar Penetrating Radar (LPR) onboard the rover that is part of the Chang'e-3 (CE-3) mission was firstly utilized to obtain in situ measurements about geological structure on the lunar surface and the thickness o...Lunar Penetrating Radar (LPR) onboard the rover that is part of the Chang'e-3 (CE-3) mission was firstly utilized to obtain in situ measurements about geological structure on the lunar surface and the thickness of the lunar regolith, which are key elements for studying the evolutional history of lunar crust. Because penetra- tion depth and resolution of LPR are related to the scientific objectives of this mission, a series of ground-based experiments using LPR was carried out, and results of the experimental data were obtained in a glacial area located in the northwest region of China. The results show that the penetration depth of the first channel antenna used for LPR is over 79 m with a resolution of 2.8 m, and that for the second channel antenna is over 50.8 m with a resolution of 17.1 cm.展开更多
This study concerns a Ka-band solid-state transmitter cloud radar, made in China, which can operate in three different work modes, with different pulse widths, and coherent and incoherent integration numbers, to meet ...This study concerns a Ka-band solid-state transmitter cloud radar, made in China, which can operate in three different work modes, with different pulse widths, and coherent and incoherent integration numbers, to meet the requirements for cloud remote sensing over the Tibetan Plateau. Specifically, the design of the three operational modes of the radar(i.e., boundary mode M1, cirrus mode M2, and precipitation mode M3) is introduced. Also, a cloud radar data merging algorithm for the three modes is proposed. Using one month's continuous measurements during summertime at Naqu on the Tibetan Plateau,we analyzed the consistency between the cloud radar measurements of the three modes. The number of occurrences of radar detections of hydrometeors and the percentage contributions of the different modes' data to the merged data were estimated.The performance of the merging algorithm was evaluated. The results indicated that the minimum detectable reflectivity for each mode was consistent with theoretical results. Merged data provided measurements with a minimum reflectivity of -35 dBZ at the height of 5 km, and obtained information above the height of 0.2 km. Measurements of radial velocity by the three operational modes agreed very well, and systematic errors in measurements of reflectivity were less than 2 dB. However,large discrepancies existed in the measurements of the linear depolarization ratio taken from the different operational modes.The percentage of radar detections of hydrometeors in mid- and high-level clouds increased by 60% through application of pulse compression techniques. In conclusion, the merged data are appropriate for cloud and precipitation studies over the Tibetan Plateau.展开更多
Lunar Penetrating Radar (LPR) based on the time domain Ultra-Wideband (UWB) technique onboard China's Chang'e-3 (CE-3) rover, has the goal of inves- tigating the lunar subsurface structure and detecting the de...Lunar Penetrating Radar (LPR) based on the time domain Ultra-Wideband (UWB) technique onboard China's Chang'e-3 (CE-3) rover, has the goal of inves- tigating the lunar subsurface structure and detecting the depth of lunar regolith. An inhomogeneous multi-layer microwave transfer inverse-model is established. The di- electric constant of the lunar regolith, the velocity of propagation, the reflection, re- fraction and transmission at interfaces, and the resolution are discussed. The model is further used to numerically simulate and analyze temporal variations in the echo obtained from the LPR attached on CE-3's rover, to reveal the location and structure of lunar regolith. The thickness of the lunar regolith is calculated by a comparison be- tween the simulated radar B-scan images based on the model and the detected result taken from the CE-3 lunar mission. The potential scientific return from LPR echoes taken from the landing region is also discussed.展开更多
In order to ensure the normal operation of radio astronomy observations,an extremely sensitive receiver system needs to be equipped in front of the large radio telescope.An 8-pole wideband high-temperature superconduc...In order to ensure the normal operation of radio astronomy observations,an extremely sensitive receiver system needs to be equipped in front of the large radio telescope.An 8-pole wideband high-temperature superconducting(HTS)filter using a Coplanar Spiral Resonator Structure with a passband of 1160~1670 MHz is developed to suppress strong radio interference.The filter is fabricated on a 36 mm×14 mm YBCO HTS film,which is deposited on a 0.5 mm thick MgO substrate.The minimum insertion loss measured in the liquid nitrogen temperature region is 0.03 dB,and the first parasitic passband appears at 2600 MHz.The measured results are in good agreement with the simulations.The filter can be used in radio telescope receivers for the observation of neutral hydrogen and pulsars,as well as in high-sensitivity satellite navigation instruments.展开更多
Taiwan Island is at the joint of Eurasian Continent and Pacific Plate, under threatening of typhoons and northeasterly strong winds. Consequently, enormous human lives and properties are lost every year. It is necessa...Taiwan Island is at the joint of Eurasian Continent and Pacific Plate, under threatening of typhoons and northeasterly strong winds. Consequently, enormous human lives and properties are lost every year. It is necessary to develop a coastal sea-state monitoring system. This paper introduces the coastal sea-state monitoring system (CSMS) along Taiwan coast. The COMC (Coastal Ocean Monitoring Center in National Cheng Kung University) built the Taiwan coastal sea-state monitoring system, which is modern and self-sufficient, consisting of data buoy, pile station, tide station, coastal weather station, and radar monitoring station. To assure the data quality, Data Quality Check Procedure (DQCP) and Standard Operation Procedure (SOP) were developed by the COMC. In further data analysis and data implementation of the observation, this paper also introduces some new methods that make the data with much more promising uses. These methods include empirical mode decomposition (EMD) used for the analysis of storm surge water level, wavelet transform used for the analysis of wave characteristics from nearshore X-band radar images, and data assimilation technique applied in wave nowcast operation. The coastal sea-state monitoring system has a great potential in providing ocean information to serve the society.展开更多
A new method based on the parameters iteration technique has been developed to determine the optimal subreflector position for shaped Cassegrain antennas, that are distorted by gravity, to improve their electromagneti...A new method based on the parameters iteration technique has been developed to determine the optimal subreflector position for shaped Cassegrain antennas, that are distorted by gravity, to improve their electromagnetic(EM) performance. Both the features of shaped surface and the relationship between optical path difference(OPD) and far field beam pattern are employed. By describing the shaped dualreflector surface as a standard discrete parabola set, we can utilize the optical features of the standard Cassegrain system in the classical OPD relationship. Then, the actual far field beam pattern is expressed as the synthesis of ideal beam and error beam by decomposing subreflector adjustment parameters using a mechanical-electromagnetic-field-coupling-model(MEFCM). Furthermore, a numerical method for determining optimal subreflector position is presented. The proposed method is based on the iteration technique of subreflector adjustment parameters, and the optimal far field pattern is used for the iteration. The numerical solution of optimal adjustment parameters can be obtained rapidly. Results for a 25 m shaped Cassegrain antenna demonstrate that the adjustment of the subreflector to the optimal position as determined by the proposed method can improve the EM performance effectively.展开更多
Large antennas play an important role in deep space exploration and astronomical research. However, their performances are inevitably affected by the main reflector surface deformation and sub-reflector displacement r...Large antennas play an important role in deep space exploration and astronomical research. However, their performances are inevitably affected by the main reflector surface deformation and sub-reflector displacement resulting from the factors of wind, temperature, and gravity, among which the effect of gravity is especially pronounced. In this work, a three-dimensional laser scanner was employed to measure the main reflector and subreflector gravitational deformation of the Tianjin 70 m antenna at different elevation angles. Here, we solved the antenna main reflector deformation and sub-reflector displacement, and analyzed the deformation law of the antenna under the action of gravity. A new measurement method of antenna main reflector deformation and subreflector displacement is realized by mutual verification of the measured results and theoretical simulations. This method will help to improve the antenna performance and provide a reference to optimize the design of largeaperture antennas.展开更多
A new digital receiver with excellent performances has been designed and developed for solar radio observation,which can receive the radio signal from direct current(DC)to 9 GHz in the direct acquisition way.On the di...A new digital receiver with excellent performances has been designed and developed for solar radio observation,which can receive the radio signal from direct current(DC)to 9 GHz in the direct acquisition way.On the digital receiver,the analog-to-digital converter(ADC)with 14-bit,two input channels and 3 Giga Samples per second(Gsps)are used to acquire observed signal,and the field-programmable-gate-array chip XCKU115 acts as the processing module.The new digital receiver can be used to directly sample the solar radio signals of frequency under 9 GHz.When receiving the solar radio signal above 9 GHz,the new digital receiver can save 1–2 stages of frequency down-conversion,and effectively improve many indexes of the solar radio observation system,i.e.,the time resolution,analog front-end circuit,weight and volume of the analog circuit system.Compared with the digital receiver with sampling rate below 1 Gsps used in existing solar radio telescope,the new digital receiver reduces the frequency switching times of large bandwidth,which is beneficial to improving the frequency and time resolutions.The ADC sampling resolution of 14 bits,providing a large dynamic range,is very beneficial to observing smaller solar eruptions.This receiver,which would be used in the solar radio observation system,well meets the latest requirements with the resolutions of time(≤1 ms)and frequency(≤0.5 MHz)for fine observation of radio signals.展开更多
The self-weight of a large fully-steerable radio telescope is one of the important factors affecting its performance.In the existing reflector system scheme,the problem of surface accuracy caused by its large and heav...The self-weight of a large fully-steerable radio telescope is one of the important factors affecting its performance.In the existing reflector system scheme,the problem of surface accuracy caused by its large and heavy structure has seriously restricted the application and implementation of large radio telescopes.Therefore,a new mesh structure scheme for a large fully-steerable radio telescope reflector is proposed in this paper.This scheme is based on a homogenized mesh back-up structure in the form of a quasi-geodesic grid and regular quasi-tri-prism or tetrahedron,which can significantly reduce the structural complexity and self-weight of the reflector under the condition that the reflector can meet the desired performance requirements.Finally,the feasibility and rationality of the scheme are evaluated by numerical simulation analysis,which has significant advantages and provides a new design for the reflector of a large fullysteerable radio telescope.展开更多
The Five-hundred-meter Aperture Spherical radio Telescope(FAST)passed its national acceptance inspection on 2020 January 11.This special issue includes a total of 15 papers,which are selected to introduce the status o...The Five-hundred-meter Aperture Spherical radio Telescope(FAST)passed its national acceptance inspection on 2020 January 11.This special issue includes a total of 15 papers,which are selected to introduce the status of FAST’s performance and demonstrate the key technologies applied to FAST.The presented performance parameters can provide an important reference for scientists to propose observations with FAST.The key technologies presented in these papers include design and implementation in the measurement and control system,electromagnetic compatibility system,and receiver system.Finally,scientific achievements obtained by FAST during the commissioning phase are also reported.展开更多
Accurate, updated information on the distribution of wetlands is essential for estimating net fluxes of greenhouse gases and for effectively protecting and managing wetlands. Because of their complex community structu...Accurate, updated information on the distribution of wetlands is essential for estimating net fluxes of greenhouse gases and for effectively protecting and managing wetlands. Because of their complex community structure and rich surface vegetation, deciduous broad-leaved forested swamps are considered to be one of the most difficult types of wetland to classify. In this research, with the support of remote sensing and geographic information system, multi-temporal radar images L-Palsar were used initially to extract the forest hydrological layer and phenology phase change layer as two variables through image analysis. Second, based on the environmental characteristics of forested swamps, three decision tree classifiers derived from the two variables were constructed to explore effective methods to identify deciduous broad-leaved forested swamps. Third, this study focused on analyzing the classification process between flat-forests, which are the most severely disturbed elements, and forested swamps. Finally, the application of the decision tree model will be discussed. The results showed that: 1) L-HH band(a L band with wavelength of 0–235 m in HH polarization mode; HH means Synthetic Aperture Radars transmit pulses in horizontal polarization and receive in horizontal polarization) in the leaf-off season is shown to be capable of detecting hydrologic conditions beneath the forest; 2) the accuracy of the classification(forested swamp and forest plat) was 81.5% based on hydrologic features, and 83.5% was achieved by combining hydrologic features and phenology response features, which indicated that hydrological characteristics under the forest played a key role. The HHOJ(refers to the band created by the subtraction with HH band in October and HH band in July) achieved by multi-temporal radar images did improve the classification accuracy, but not significantly, and more leaf-off radar images may be more efficient than multi-seasonal radar images for inland forested swamp mapping; 3) the lower separability between forested swamps dominated by vegetated surfaces and forest plat covered with litter was the main cause of the uncertainty in classification, which led to misleading interpretations of the pixel-based classification. Finally, through the analysis with kappa coefficients, it was shown that the value of the intersection point was an ideal choice for the variable.展开更多
基金funded by the National Key R&D Program of China under No. 2022YFC2205300the National Natural Science Foundation of China (12073067)the Chinese Academy of Sciences (CAS)“Light of West China” Program under No. 2022-XBQNXZ-012。
文摘The simulation of radio frequency interference(RFI) cancellation by applying a spatial filtering technique for phased array feed(PAF) is presented. In order to better reflect the characteristics of PAF, a new signal model is to add the coupling coefficient among elements of PAF to the conventional array signal model. Then the subspace projection(SP) algorithm is used to cancel RFI from the correlation matrix of the signal, and finally, the 2D power image is drawn. The power variation of signal-of-interest direction and RFI direction before and after using the SP algorithm is analyzed. The new signal model and simulation strategy can be used to test and verify the beamformer.
基金supported by the National Key R&D Program of China(No.2022YFC2205303)the National Natural Science Foundation of China(11973078)+3 种基金the Chinese Academy of Sciences(CAS)“Light of West China”Program(2020XBQNXZ-018)the Natural Science Foundation of Xinjiang Uygur Autonomous Region(2022D01A358,2022D01A157)the Research on the science and technology partnership program and international science and technology cooperation program of Shanghai Cooperation Organization(2020E01041)partly supported by the Operation,Maintenance and Upgrading Fund for Astronomical Telescopes and Facility Instruments,budgeted from the Ministry of Finance of China(MOF)and administrated by Chinese Academy of Sciences。
文摘The receiver is a signal receiving device placed at the focus of the telescope.In order to improve the observation efficiency,the concept of phased array receiver has been proposed in recent years,which places a small phased array at the focal plane of the reflector,and flexible pattern and beam scanning functions can be achieved through a beamforming network.If combined with the element multiplexing,all beams within the entire field of view can be observed simultaneously to achieve continuous sky coverage.This article focuses on the front-end array of phased array receiver at 0.7-1.8 GHz for QiTai Telescope,and designs a Vivaldi antenna array of PCB structure with dual line polarization.Each polarization antenna is designed to arrange in a rectangle manner by 11×10.Based on the simulation results of the focal field,32,18,and eight elements were selected to form one beam at 0.7,1.25,and1.8 GHz.An analog beamforming network was constructed,and the measured gains of axial beam under uniform weighting were 19.32,13.72,and 15.22 dBi.Combining the beam scanning method of reflector antenna,the pattern test of different position element sets required for PAF beam scanning was carried out under independent array.The pattern optimization at 1.25 GHz was carried out by weighting method of conjugate field matching.Compared with uniform weighting,the gain,sidelobe level,and main beam direction under conjugate field matching have been improved.Although the above test and simulation results are slightly different,which is related to the passive array and laboratory testing condition,the relevant work has accumulated experience in the development of the front-end array for the phased array receiver,and has good guiding significance for future performance verification after the array is installed on the telescope.
基金supported by the National Key R&D Program of China No.2021YFC220350the National Natural Science Foundation of China Nos.12303094&52165053+2 种基金the Natural Science Foundation of Xinjiang Uygur Autonomous Region Nos.2022D01C683the China Postdoctoral Science Foundation Nos.2023T160549&2021M702751in part by Guangdong Basic and Applied Basic Research Foundation Nos.2020A1515111043&2023A1515010703。
文摘Active surface technique is one of the key technologies to ensure the reflector accuracy of the millimeter/submillimeter wave large reflector antenna.The antenna is complex,large-scale,and high-precision equipment,and its active surfaces are affected by various factors that are difficult to comprehensively deal with.In this paper,based on the advantage of the deep learning method that can be improved through data learning,we propose the active adjustment value analysis method of large reflector antenna based on deep learning.This method constructs a neural network model for antenna active adjustment analysis in view of the fact that a large reflector antenna consists of multiple panels spliced together.Based on the constraint that a single actuator has to support multiple panels(usually 4),an autonomously learned neural network emphasis layer module is designed to enhance the adaptability of the active adjustment neural network model.The classical 8-meter antenna is used as a case study,the actuators have a mean adjustment error of 0.00252 mm,and the corresponding antenna surface error is0.00523 mm.This active adjustment result shows the effectiveness of the method in this paper.
基金Supported by the National Natural Science Foundation of China
文摘To improve our understanding of the formation and evolution of the Moon, one of the payloads onboard the Chang'e-3 (CE-3) rover is Lunar Penetrating Radar (LPR). This investigation is the first attempt to explore the lunar subsurface structure by using ground penetrating radar with high resolution. We have probed the subsur- face to a depth of several hundred meters using LPR. In-orbit testing, data processing and the preliminary results are presented. These observations have revealed the con- figuration of regolith where the thickness of regolith varies from about 4 m to 6 m. In addition, one layer of lunar rock, which is about 330 m deep and might have been accumulated during the depositional hiatus of mare basalts, was detected.
基金Supported by the National Natural Science Foundation of China
文摘Lunar Penetrating Radar (LPR) onboard the rover that is part of the Chang'e-3 (CE-3) mission was firstly utilized to obtain in situ measurements about geological structure on the lunar surface and the thickness of the lunar regolith, which are key elements for studying the evolutional history of lunar crust. Because penetra- tion depth and resolution of LPR are related to the scientific objectives of this mission, a series of ground-based experiments using LPR was carried out, and results of the experimental data were obtained in a glacial area located in the northwest region of China. The results show that the penetration depth of the first channel antenna used for LPR is over 79 m with a resolution of 2.8 m, and that for the second channel antenna is over 50.8 m with a resolution of 17.1 cm.
基金funded by the National Sciences Foundation of China(Grant No.91337103)the China Meteorological Administration Special Public Welfare Research Fund(Grant No.GYHY201406001)
文摘This study concerns a Ka-band solid-state transmitter cloud radar, made in China, which can operate in three different work modes, with different pulse widths, and coherent and incoherent integration numbers, to meet the requirements for cloud remote sensing over the Tibetan Plateau. Specifically, the design of the three operational modes of the radar(i.e., boundary mode M1, cirrus mode M2, and precipitation mode M3) is introduced. Also, a cloud radar data merging algorithm for the three modes is proposed. Using one month's continuous measurements during summertime at Naqu on the Tibetan Plateau,we analyzed the consistency between the cloud radar measurements of the three modes. The number of occurrences of radar detections of hydrometeors and the percentage contributions of the different modes' data to the merged data were estimated.The performance of the merging algorithm was evaluated. The results indicated that the minimum detectable reflectivity for each mode was consistent with theoretical results. Merged data provided measurements with a minimum reflectivity of -35 dBZ at the height of 5 km, and obtained information above the height of 0.2 km. Measurements of radial velocity by the three operational modes agreed very well, and systematic errors in measurements of reflectivity were less than 2 dB. However,large discrepancies existed in the measurements of the linear depolarization ratio taken from the different operational modes.The percentage of radar detections of hydrometeors in mid- and high-level clouds increased by 60% through application of pulse compression techniques. In conclusion, the merged data are appropriate for cloud and precipitation studies over the Tibetan Plateau.
基金Supported by the National Natural Science Foundation of China
文摘Lunar Penetrating Radar (LPR) based on the time domain Ultra-Wideband (UWB) technique onboard China's Chang'e-3 (CE-3) rover, has the goal of inves- tigating the lunar subsurface structure and detecting the depth of lunar regolith. An inhomogeneous multi-layer microwave transfer inverse-model is established. The di- electric constant of the lunar regolith, the velocity of propagation, the reflection, re- fraction and transmission at interfaces, and the resolution are discussed. The model is further used to numerically simulate and analyze temporal variations in the echo obtained from the LPR attached on CE-3's rover, to reveal the location and structure of lunar regolith. The thickness of the lunar regolith is calculated by a comparison be- tween the simulated radar B-scan images based on the model and the detected result taken from the CE-3 lunar mission. The potential scientific return from LPR echoes taken from the landing region is also discussed.
基金supported by the Science and Technology Project of Tibet Autonomous under grant XZ201901-GB-21the National Natural Science Foundation of China under grant11073027the Science and Technology Research and Development Program Project of China National Railway Group under grant P2021G011。
文摘In order to ensure the normal operation of radio astronomy observations,an extremely sensitive receiver system needs to be equipped in front of the large radio telescope.An 8-pole wideband high-temperature superconducting(HTS)filter using a Coplanar Spiral Resonator Structure with a passband of 1160~1670 MHz is developed to suppress strong radio interference.The filter is fabricated on a 36 mm×14 mm YBCO HTS film,which is deposited on a 0.5 mm thick MgO substrate.The minimum insertion loss measured in the liquid nitrogen temperature region is 0.03 dB,and the first parasitic passband appears at 2600 MHz.The measured results are in good agreement with the simulations.The filter can be used in radio telescope receivers for the observation of neutral hydrogen and pulsars,as well as in high-sensitivity satellite navigation instruments.
基金supported by National Natural Science Foundation of China (Grant No. 51109075)Fundamental Research Funds for the Central Universities (Grant No. 2011B05814)Doctoral Fund of Ministry of Education of China (Grant No. 20100094120008)
文摘Taiwan Island is at the joint of Eurasian Continent and Pacific Plate, under threatening of typhoons and northeasterly strong winds. Consequently, enormous human lives and properties are lost every year. It is necessary to develop a coastal sea-state monitoring system. This paper introduces the coastal sea-state monitoring system (CSMS) along Taiwan coast. The COMC (Coastal Ocean Monitoring Center in National Cheng Kung University) built the Taiwan coastal sea-state monitoring system, which is modern and self-sufficient, consisting of data buoy, pile station, tide station, coastal weather station, and radar monitoring station. To assure the data quality, Data Quality Check Procedure (DQCP) and Standard Operation Procedure (SOP) were developed by the COMC. In further data analysis and data implementation of the observation, this paper also introduces some new methods that make the data with much more promising uses. These methods include empirical mode decomposition (EMD) used for the analysis of storm surge water level, wavelet transform used for the analysis of wave characteristics from nearshore X-band radar images, and data assimilation technique applied in wave nowcast operation. The coastal sea-state monitoring system has a great potential in providing ocean information to serve the society.
基金supported by the National Key Basic Research Program of China (2015CB857100)the Chinese Academy of Sciences (CAS) "Light of West China" Program (2017-XBQNXZB-021)+2 种基金the National Natural Science Foundation of China (Nos. 51805399 and U1737211)the Natural Science Foundation of Shanxi Province (No. 2018JZ500)supported by the Operation, Maintenance and Upgrading Fund for Astronomical Telescopes and Facility Instruments, budgeted from the Ministry of Finance of China (MOF) and administrated by CAS
文摘A new method based on the parameters iteration technique has been developed to determine the optimal subreflector position for shaped Cassegrain antennas, that are distorted by gravity, to improve their electromagnetic(EM) performance. Both the features of shaped surface and the relationship between optical path difference(OPD) and far field beam pattern are employed. By describing the shaped dualreflector surface as a standard discrete parabola set, we can utilize the optical features of the standard Cassegrain system in the classical OPD relationship. Then, the actual far field beam pattern is expressed as the synthesis of ideal beam and error beam by decomposing subreflector adjustment parameters using a mechanical-electromagnetic-field-coupling-model(MEFCM). Furthermore, a numerical method for determining optimal subreflector position is presented. The proposed method is based on the iteration technique of subreflector adjustment parameters, and the optimal far field pattern is used for the iteration. The numerical solution of optimal adjustment parameters can be obtained rapidly. Results for a 25 m shaped Cassegrain antenna demonstrate that the adjustment of the subreflector to the optimal position as determined by the proposed method can improve the EM performance effectively.
基金funded by the Key Research Program of the Chinese Academy of Science (ZDBS-SSW-TLC001)。
文摘Large antennas play an important role in deep space exploration and astronomical research. However, their performances are inevitably affected by the main reflector surface deformation and sub-reflector displacement resulting from the factors of wind, temperature, and gravity, among which the effect of gravity is especially pronounced. In this work, a three-dimensional laser scanner was employed to measure the main reflector and subreflector gravitational deformation of the Tianjin 70 m antenna at different elevation angles. Here, we solved the antenna main reflector deformation and sub-reflector displacement, and analyzed the deformation law of the antenna under the action of gravity. A new measurement method of antenna main reflector deformation and subreflector displacement is realized by mutual verification of the measured results and theoretical simulations. This method will help to improve the antenna performance and provide a reference to optimize the design of largeaperture antennas.
基金the National Natural Science Foundation of China(grant Nos.42127804,41774180 and 41904158)Shandong postdoctoral innovation project(202002004)Young Scholars Program of Shandong University,Weihai(208220201005)。
文摘A new digital receiver with excellent performances has been designed and developed for solar radio observation,which can receive the radio signal from direct current(DC)to 9 GHz in the direct acquisition way.On the digital receiver,the analog-to-digital converter(ADC)with 14-bit,two input channels and 3 Giga Samples per second(Gsps)are used to acquire observed signal,and the field-programmable-gate-array chip XCKU115 acts as the processing module.The new digital receiver can be used to directly sample the solar radio signals of frequency under 9 GHz.When receiving the solar radio signal above 9 GHz,the new digital receiver can save 1–2 stages of frequency down-conversion,and effectively improve many indexes of the solar radio observation system,i.e.,the time resolution,analog front-end circuit,weight and volume of the analog circuit system.Compared with the digital receiver with sampling rate below 1 Gsps used in existing solar radio telescope,the new digital receiver reduces the frequency switching times of large bandwidth,which is beneficial to improving the frequency and time resolutions.The ADC sampling resolution of 14 bits,providing a large dynamic range,is very beneficial to observing smaller solar eruptions.This receiver,which would be used in the solar radio observation system,well meets the latest requirements with the resolutions of time(≤1 ms)and frequency(≤0.5 MHz)for fine observation of radio signals.
基金supported by the National Natural Science Foundation of China(Grant No.50975217)。
文摘The self-weight of a large fully-steerable radio telescope is one of the important factors affecting its performance.In the existing reflector system scheme,the problem of surface accuracy caused by its large and heavy structure has seriously restricted the application and implementation of large radio telescopes.Therefore,a new mesh structure scheme for a large fully-steerable radio telescope reflector is proposed in this paper.This scheme is based on a homogenized mesh back-up structure in the form of a quasi-geodesic grid and regular quasi-tri-prism or tetrahedron,which can significantly reduce the structural complexity and self-weight of the reflector under the condition that the reflector can meet the desired performance requirements.Finally,the feasibility and rationality of the scheme are evaluated by numerical simulation analysis,which has significant advantages and provides a new design for the reflector of a large fullysteerable radio telescope.
文摘The Five-hundred-meter Aperture Spherical radio Telescope(FAST)passed its national acceptance inspection on 2020 January 11.This special issue includes a total of 15 papers,which are selected to introduce the status of FAST’s performance and demonstrate the key technologies applied to FAST.The presented performance parameters can provide an important reference for scientists to propose observations with FAST.The key technologies presented in these papers include design and implementation in the measurement and control system,electromagnetic compatibility system,and receiver system.Finally,scientific achievements obtained by FAST during the commissioning phase are also reported.
基金Under the auspices of Special Funds of State Environmental Protection Public Welfare Industry(No.2011467032)
文摘Accurate, updated information on the distribution of wetlands is essential for estimating net fluxes of greenhouse gases and for effectively protecting and managing wetlands. Because of their complex community structure and rich surface vegetation, deciduous broad-leaved forested swamps are considered to be one of the most difficult types of wetland to classify. In this research, with the support of remote sensing and geographic information system, multi-temporal radar images L-Palsar were used initially to extract the forest hydrological layer and phenology phase change layer as two variables through image analysis. Second, based on the environmental characteristics of forested swamps, three decision tree classifiers derived from the two variables were constructed to explore effective methods to identify deciduous broad-leaved forested swamps. Third, this study focused on analyzing the classification process between flat-forests, which are the most severely disturbed elements, and forested swamps. Finally, the application of the decision tree model will be discussed. The results showed that: 1) L-HH band(a L band with wavelength of 0–235 m in HH polarization mode; HH means Synthetic Aperture Radars transmit pulses in horizontal polarization and receive in horizontal polarization) in the leaf-off season is shown to be capable of detecting hydrologic conditions beneath the forest; 2) the accuracy of the classification(forested swamp and forest plat) was 81.5% based on hydrologic features, and 83.5% was achieved by combining hydrologic features and phenology response features, which indicated that hydrological characteristics under the forest played a key role. The HHOJ(refers to the band created by the subtraction with HH band in October and HH band in July) achieved by multi-temporal radar images did improve the classification accuracy, but not significantly, and more leaf-off radar images may be more efficient than multi-seasonal radar images for inland forested swamp mapping; 3) the lower separability between forested swamps dominated by vegetated surfaces and forest plat covered with litter was the main cause of the uncertainty in classification, which led to misleading interpretations of the pixel-based classification. Finally, through the analysis with kappa coefficients, it was shown that the value of the intersection point was an ideal choice for the variable.