期刊文献+
共找到837篇文章
< 1 2 42 >
每页显示 20 50 100
RADAR TARGET RECOGNITION BASED ON NEURAL NETWORK
1
作者 Zhao Qun Bao Zheng Ye Wei (Institute of Electronics Engineering, Xidian University, Xi’an 710071) 《Journal of Electronics(China)》 1996年第1期1-10,共10页
The problem of radar target recognition using range profiles is investigated in this paper, based on a Radial Basis Function Network(RBFN). A preprocessing method is proposed, which performs amplitude average of the r... The problem of radar target recognition using range profiles is investigated in this paper, based on a Radial Basis Function Network(RBFN). A preprocessing method is proposed, which performs amplitude average of the range profiles to obtain more stable patterns. After pointing out the limitedness of traditional empirical formula, this paper also gives a method of estimating the shape parameter a of a Gaussian kernel function according-to spatial distribution of the training samples. It is shown that the method proposed in this paper offers promise for target recognition, from both the theoretical analysis and the experimental results of rotating platform imaging based on data acquired in a microwave anechoic chamber. 展开更多
关键词 neural network RADIAL BASIS function RANGE PROFILE target recognition
下载PDF
Deep convolutional neural network for meteorology target detection in airborne weather radar images 被引量:2
2
作者 YU Chaopeng XIONG Wei +1 位作者 LI Xiaoqing DONG Lei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第5期1147-1157,共11页
Considering the problem that the scattering echo images of airborne Doppler weather radar are often reduced by ground clutters,the accuracy and confidence of meteorology target detection are reduced.In this paper,a de... Considering the problem that the scattering echo images of airborne Doppler weather radar are often reduced by ground clutters,the accuracy and confidence of meteorology target detection are reduced.In this paper,a deep convolutional neural network(DCNN)is proposed for meteorology target detection and ground clutter suppression with a large collection of airborne weather radar images as network input.For each weather radar image,the corresponding digital elevation model(DEM)image is extracted on basis of the radar antenna scan-ning parameters and plane position,and is further fed to the net-work as a supplement for ground clutter suppression.The fea-tures of actual meteorology targets are learned in each bottle-neck module of the proposed network and convolved into deeper iterations in the forward propagation process.Then the network parameters are updated by the back propagation itera-tion of the training error.Experimental results on the real mea-sured images show that our proposed DCNN outperforms the counterparts in terms of six evaluation factors.Meanwhile,the network outputs are in good agreement with the expected mete-orology detection results(labels).It is demonstrated that the pro-posed network would have a promising meteorology observa-tion application with minimal effort on network variables or parameter changes. 展开更多
关键词 meteorology target detection ground clutter sup-pression weather radar images convolutional neural network(CNN)
下载PDF
ia-PNCC: Noise Processing Method for Underwater Target Recognition Convolutional Neural Network 被引量:4
3
作者 Nianbin Wang Ming He +4 位作者 Jianguo Sun Hongbin Wang Lianke Zhou Ci Chu Lei Chen 《Computers, Materials & Continua》 SCIE EI 2019年第1期169-181,共13页
Underwater target recognition is a key technology for underwater acoustic countermeasure.How to classify and recognize underwater targets according to the noise information of underwater targets has been a hot topic i... Underwater target recognition is a key technology for underwater acoustic countermeasure.How to classify and recognize underwater targets according to the noise information of underwater targets has been a hot topic in the field of underwater acoustic signals.In this paper,the deep learning model is applied to underwater target recognition.Improved anti-noise Power-Normalized Cepstral Coefficients(ia-PNCC)is proposed,based on PNCC applied to underwater noises.Multitaper and normalized Gammatone filter banks are applied to improve the anti-noise capacity.The method is combined with a convolutional neural network in order to recognize the underwater target.Experiment results show that the acoustic feature presented by ia-PNCC has lower noise and are wellsuited to underwater target recognition using a convolutional neural network.Compared with the combination of convolutional neural network with single acoustic feature,such as MFCC(Mel-scale Frequency Cepstral Coefficients)or LPCC(Linear Prediction Cepstral Coefficients),the combination of the ia-PNCC with a convolutional neural network offers better accuracy for underwater target recognition. 展开更多
关键词 Noise PROCESSING UNDERWATER target recognition convolutional neural network
下载PDF
High-accuracy target tracking for multistatic passive radar based on a deep feedforward neural network 被引量:1
4
作者 Baoxiong XU Jianxin YI +2 位作者 Feng CHENG Ziping GONG Xianrong WAN 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2023年第8期1214-1230,共17页
In radar systems,target tracking errors are mainly from motion models and nonlinear measurements.When we evaluate a tracking algorithm,its tracking accuracy is the main criterion.To improve the tracking accuracy,in th... In radar systems,target tracking errors are mainly from motion models and nonlinear measurements.When we evaluate a tracking algorithm,its tracking accuracy is the main criterion.To improve the tracking accuracy,in this paper we formulate the tracking problem into a regression model from measurements to target states.A tracking algorithm based on a modified deep feedforward neural network(MDFNN)is then proposed.In MDFNN,a filter layer is introduced to describe the temporal sequence relationship of the input measurement sequence,and the optimal measurement sequence size is analyzed.Simulations and field experimental data of the passive radar show that the accuracy of the proposed algorithm is better than those of extended Kalman filter(EKF),unscented Kalman filter(UKF),and recurrent neural network(RNN)based tracking methods under the considered scenarios. 展开更多
关键词 Deep feedforward neural network Filter layer Passive radar target tracking Tracking accuracy
原文传递
Generalization Capabilities of Feedforward Neural Networks for Pattern Recognition
5
作者 黄德双 《Journal of Beijing Institute of Technology》 EI CAS 1996年第2期192+184-192,共10页
This paper studies the generalization capability of feedforward neural networks (FNN).The mechanism of FNNs for classification is investigated from the geometric and probabilistic viewpoints. It is pointed out that th... This paper studies the generalization capability of feedforward neural networks (FNN).The mechanism of FNNs for classification is investigated from the geometric and probabilistic viewpoints. It is pointed out that the outputs of the output layer in the FNNs for classification correspond to the estimates of posteriori probability of the input pattern samples with desired outputs 1 or 0. The theorem for the generalized kernel function in the radial basis function networks (RBFN) is given. For an 2-layer perceptron network (2-LPN). an idea of using extended samples to improve generalization capability is proposed. Finally. the experimental results of radar target classification are given to verify the generaliztion capability of the RBFNs. 展开更多
关键词 feedforward neural networks radial basis function networks multilayer perceptronnetworks generalization capability radar target classification
下载PDF
MOVING TARGETS PATTERN RECOGNITION BASED ON THE WAVELET NEURAL NETWORK
6
作者 GeGuangying ChenLili XuJianjian 《Journal of Electronics(China)》 2005年第3期321-328,共8页
Based on pattern recognition theory and neural network technology, moving objects automatic detection and classification method integrating advanced wavelet analysis are discussed in detail. An algorithm of moving tar... Based on pattern recognition theory and neural network technology, moving objects automatic detection and classification method integrating advanced wavelet analysis are discussed in detail. An algorithm of moving targets pattern recognition on the combination of inter-frame difference and wavelet neural network is presented. The experimental results indicate that the designed BP wavelet network using this algorithm can recognize and classify moving targets rapidly and effectively. 展开更多
关键词 Moving targets detection Pattern recognition Wavelet neural network targets classification
下载PDF
Research on Behaviour Recognition Method for Moving Target Based on Deep Convolutional Neural Network
7
作者 Jianfang Liu Hao Zheng Mengyi Liao 《Journal of Computer and Communications》 2020年第9期54-66,共13页
Aiming at the problem that the average recognition degree of the moving target line is low with the traditional motion target behaviour recognition method, a motion recognition method based on deep convolutional neura... Aiming at the problem that the average recognition degree of the moving target line is low with the traditional motion target behaviour recognition method, a motion recognition method based on deep convolutional neural network is proposed in this paper. A target model of deep convolutional neural network is constructed and the basic unit of the network is designed by using the model. By setting the unit, the returned unit is calculated into the standard density diagram, and the position of the moving target is determined by the local maximum method to realize the behavior identification of the moving target. The experimental results show that the multi-parameter SICNN256 model is slightly better than other model structures. The average recognition rate and recognition rate of the moving target behavior recognition method based on deep convolutional neural network are higher than those of the traditional method, which proves its effectiveness. Since the frequency of single target is higher than that of multiple recognition and there is no target similarity recognition, similar target error detection cannot be excluded. 展开更多
关键词 Convolutional neural network Moving target recognition DEPTH
下载PDF
Marine target detection based on Marine-Faster R-CNN for navigation radar plane position indicator images 被引量:2
8
作者 Xiaolong CHEN Xiaoqian MU +2 位作者 Jian GUAN Ningbo LIU Wei ZHOU 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2022年第4期630-643,共14页
As a classic deep learning target detection algorithm,Faster R-CNN(region convolutional neural network)has been widely used in high-resolution synthetic aperture radar(SAR)and inverse SAR(ISAR)image detection.However,... As a classic deep learning target detection algorithm,Faster R-CNN(region convolutional neural network)has been widely used in high-resolution synthetic aperture radar(SAR)and inverse SAR(ISAR)image detection.However,for most common low-resolution radar plane position indicator(PPI)images,it is difficult to achieve good performance.In this paper,taking navigation radar PPI images as an example,a marine target detection method based on the Marine-Faster R-CNN algorithm is proposed in the case of complex background(e.g.,sea clutter)and target characteristics.The method performs feature extraction and target recognition on PPI images generated by radar echoes with the convolutional neural network(CNN).First,to improve the accuracy of detecting marine targets and reduce the false alarm rate,Faster R-CNN was optimized as the Marine-Faster R-CNN in five respects:new backbone network,anchor size,dense target detection,data sample balance,and scale normalization.Then,JRC(Japan Radio Co.,Ltd.)navigation radar was used to collect echo data under different conditions to build a marine target dataset.Finally,comparisons with the classic Faster R-CNN method and the constant false alarm rate(CFAR)algorithm proved that the proposed method is more accurate and robust,has stronger generalization ability,and can be applied to the detection of marine targets for navigation radar.Its performance was tested with datasets from different observation conditions(sea states,radar parameters,and different targets). 展开更多
关键词 Marine target detection Navigation radar Plane position indicator(PPI)images Convolutional neural network(CNN) Faster R-CNN(region convolutional neural network)method
原文传递
基于CNN-Swin Transformer Network的LPI雷达信号识别
9
作者 苏琮智 杨承志 +2 位作者 邴雨晨 吴宏超 邓力洪 《现代雷达》 CSCD 北大核心 2024年第3期59-65,共7页
针对在低信噪比(SNR)条件下,低截获概率雷达信号调制方式识别准确率低的问题,提出一种基于Transformer和卷积神经网络(CNN)的雷达信号识别方法。首先,引入Swin Transformer模型并在模型前端设计CNN特征提取层构建了CNN+Swin Transforme... 针对在低信噪比(SNR)条件下,低截获概率雷达信号调制方式识别准确率低的问题,提出一种基于Transformer和卷积神经网络(CNN)的雷达信号识别方法。首先,引入Swin Transformer模型并在模型前端设计CNN特征提取层构建了CNN+Swin Transformer网络(CSTN),然后利用时频分析获取雷达信号的时频特征,对图像进行预处理后输入CSTN模型进行训练,由网络的底部到顶部不断提取图像更丰富的语义信息,最后通过Softmax分类器对六类不同调制方式信号进行分类识别。仿真实验表明:在SNR为-18 dB时,该方法对六类典型雷达信号的平均识别率达到了94.26%,证明了所提方法的可行性。 展开更多
关键词 低截获概率雷达 信号调制方式识别 Swin Transformer网络 卷积神经网络 时频分析
下载PDF
Arbitrary-oriented target detection in large scene sar images 被引量:3
10
作者 Zi-shuo Han Chun-ping Wang Qiang Fu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第4期933-946,共14页
Target detection in the field of synthetic aperture radar(SAR) has attracted considerable attention of researchers in national defense technology worldwide,owing to its unique advantages like high resolution and large... Target detection in the field of synthetic aperture radar(SAR) has attracted considerable attention of researchers in national defense technology worldwide,owing to its unique advantages like high resolution and large scene image acquisition capabilities of SAR.However,due to strong speckle noise and low signal-to-noise ratio,it is difficult to extract representative features of target from SAR images,which greatly inhibits the effectiveness of traditional methods.In order to address the above problems,a framework called contextual rotation region-based convolutional neural network(RCNN) with multilayer fusion is proposed in this paper.Specifically,aimed to enable RCNN to perform target detection in large scene SAR images efficiently,maximum sliding strategy is applied to crop the large scene image into a series of sub-images before RCNN.Instead of using the highest-layer output for proposal generation and target detection,fusion feature maps with high resolution and rich semantic information are constructed by multilayer fusion strategy.Then,we put forwards rotation anchors to predict the minimum circumscribed rectangle of targets to reduce redundant detection region.Furthermore,shadow areas serve as contextual features to provide extraneous information for the detector identify and locate targets accurately.Experimental results on the simulated large scene SAR image dataset show that the proposed method achieves a satisfactory performance in large scene SAR target detection. 展开更多
关键词 target detection Convolutional neural network Multilayer fusion Context information Synthetic aperture radar
下载PDF
Human Activity Recognition Based on Frequency-Modulated Continuous Wave and DenseNet
11
作者 Wenshuo Jiang Yuqian Ma +4 位作者 Wencheng Zhuang Zhongqiang Wu Yiming Hua Meng Li Zhengjie Wang 《Journal of Computer and Communications》 2023年第7期15-28,共14页
With the development of wireless technology, Frequency-Modulated Continuous Wave (FMCW) radar has increased sensing capability and can be used to recognize human activity. These applications have gained wide-spread at... With the development of wireless technology, Frequency-Modulated Continuous Wave (FMCW) radar has increased sensing capability and can be used to recognize human activity. These applications have gained wide-spread attention and become a hot research area. FMCW signals reflected by target activity can be collected, and human activity can be recognized based on the measurements. This paper focused on human activity recognition based on FMCW and DenseNet. We collected point clouds from FMCW and analyzed them to recognize human activity because different activities could lead to unique point cloud features. We built and trained the neural network to implement human activities using a FMCW signal. Firstly, this paper presented recent reviews about human activity recognition using wireless signals. Then, it introduced the basic concepts of FMCW radar and described the fundamental principles of the system using FMCW radar. We also provided the system framework, experiment scenario, and DenseNet neural network structure. Finally, we presented the experimental results and analyzed the accuracy of different neural network models. The system achieved recognition accuracy of 100 percent for five activities using the DenseNet. We concluded the paper by discussing the current issues and future research directions. 展开更多
关键词 Human Behavior recognition Millimeter-Wave radar Convolutional neural networks Wireless Signal
下载PDF
基于DenseNet和卷积注意力模块的高精度手势识别 被引量:4
12
作者 赵雅琴 宋雨晴 +3 位作者 吴晗 何胜阳 刘璞秋 吴龙文 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第3期967-976,共10页
非接触的手势识别是一种新型人机交互方式,在增强现实(AR)/虚拟现实(VR)、智能家居、智能医疗等方面有着广阔的应用前景,近年来成为一个研究热点。由于需要利用毫米波雷达进行更精确的微动手势识别,该文提出一种新型的基于MIMO毫米波雷... 非接触的手势识别是一种新型人机交互方式,在增强现实(AR)/虚拟现实(VR)、智能家居、智能医疗等方面有着广阔的应用前景,近年来成为一个研究热点。由于需要利用毫米波雷达进行更精确的微动手势识别,该文提出一种新型的基于MIMO毫米波雷达的微动手势识别方法。采用4片AWR1243雷达板级联而成的毫米波级联(MMWCAS)雷达采集手势回波,对手势回波进行时频分析,基于距离-多普勒(RD)图和3D点云检测出人手目标。通过数据预处理,提取手势目标的距离-时间谱图(RTM)、多普勒-时间谱图(DTM)、方位角-时间谱图(ATM)和俯仰角-时间谱图(ETM),更加全面地表征手势的运动特征,并形成混合特征谱图(FTM),对12种微动手势进行识别。设计了基于DenseNet和卷积注意力模块的手势识别网络,将混合特征谱图作为网络的输入,创新性地融合了卷积注意力模块(CBAM),实验表明,识别准确率达到99.03%,且该网络将注意力放在手势动作的前半段,实现了高精度的手势识别。 展开更多
关键词 手势识别 毫米波雷达 卷积神经网络 卷积注意力模块
下载PDF
基于卷积神经网络的遥感图像目标识别仿真 被引量:1
13
作者 秦川 高翔 《计算机仿真》 2024年第4期274-278,共5页
在遥感图像中,目标往往位于复杂的地物背景中,包括不同类型的植被、土地覆盖、建筑物等。上述复杂的地物背景对目标识别造成了困难。为了精准识别遥感图像目标,提出一种卷积神经网络下遥感图像目标识别算法。将暗通道原理和双边滤波算... 在遥感图像中,目标往往位于复杂的地物背景中,包括不同类型的植被、土地覆盖、建筑物等。上述复杂的地物背景对目标识别造成了困难。为了精准识别遥感图像目标,提出一种卷积神经网络下遥感图像目标识别算法。将暗通道原理和双边滤波算法有效结合,对遥感图像展开增强处理。统计分析遥感图像目标尺度范围,通过训练和测试卷积神经网络,得到最佳目标感兴趣区域尺度。确定目标感兴趣区域最佳尺度后,构建基于卷积神经网络的遥感图像目标识别架构,完成遥感图像目标识别。通过实验分析证明,采用所提算法可以有效提升遥感图像增强效果,具有较好的遥感图像目标识别性能。 展开更多
关键词 卷积神经网络 图像增强 遥感图像 目标识别
下载PDF
基于双流CNN-BiLSTM的毫米波雷达人体动作识别方法
14
作者 吴哲夫 闫鑫悦 +2 位作者 施汉银 龚树凤 方路平 《传感技术学报》 CAS CSCD 北大核心 2024年第10期1754-1763,共10页
目前基于雷达的人体动作识别方法,大多是先对人体动作的回波信号进行多维快速傅里叶变换(FFT)得到距离、多普勒和角度等信息,构造各种数据谱图后再输入到神经网络中进行分类识别,数据预处理过程较为复杂。提出了一种双流卷积神经网络(C... 目前基于雷达的人体动作识别方法,大多是先对人体动作的回波信号进行多维快速傅里叶变换(FFT)得到距离、多普勒和角度等信息,构造各种数据谱图后再输入到神经网络中进行分类识别,数据预处理过程较为复杂。提出了一种双流卷积神经网络(CNN)与双向长短时记忆网络(BiLSTM)串联的毫米波雷达人体动作识别方法。首先对原始的雷达回波信号复数采样数据(I/Q)进行帧差处理,以消除静态干扰,并将其转换为幅度/相位(A/P)的数据格式;然后将帧差后的I/Q和A/P数据分别输入单流的CNN-BiLSTM网络,提取人体动作的空间和时间特征,最后进行双流网络的融合以增强特征的交互性,提高识别准确率。实验结果表明,该方法数据预处理简单,并充分利用了动作数据的帧间相关性,模型收敛快,识别准确率可以达到99%,是一种快速有效的人体动作识别方法。 展开更多
关键词 雷达目标识别 人体动作识别 卷积神经网络 双向长短时记忆网络
下载PDF
基于注意力机制的鸟类识别算法
15
作者 陈天华 朱家煊 印杰 《计算机应用》 CSCD 北大核心 2024年第4期1114-1120,共7页
针对现有细粒度鸟类目标识别算法准确率不高的问题,提出一种鸟类目标检测算法YOLOv5-Bird。首先,在YOLOv5主干网络中引入基于混合域的坐标注意力(CA)机制,增大有价值的通道权重,以区分目标特征和背景中的冗余特征;其次,在原始主干网络... 针对现有细粒度鸟类目标识别算法准确率不高的问题,提出一种鸟类目标检测算法YOLOv5-Bird。首先,在YOLOv5主干网络中引入基于混合域的坐标注意力(CA)机制,增大有价值的通道权重,以区分目标特征和背景中的冗余特征;其次,在原始主干网络中采用双层路由注意力(BRA)模块替换原网络中的部分C3模块,过滤低相关度的键值对信息,获得高效的长距离依赖关系;最后,使用WIoU(Wise-Intersection over Union)损失函数,增强算法对目标的定位能力。实验结果表明,YOLOv5-Bird在自建数据集上取得了82.8%的精确率和77.0%的召回率,比YOLOv5算法分别提高4.3和7.6个百分点,也优于增加其他注意力机制的算法。验证了YOLOv5-Bird在鸟类目标检测场景中具有较好的性能。 展开更多
关键词 目标检测 生物识别 卷积神经网络 注意力机制 损失函数
下载PDF
人工智能时代的目标识别课程教学
16
作者 王红梅 《实验室研究与探索》 CAS 北大核心 2024年第6期94-98,共5页
目标识别的核心任务是判别图像的目标类型,通常采用机器学习算法完成,而鲁棒特征提取是其关键。传统人工提取的特征通常存在表达能力较弱的问题。深度学习理论的兴起为高精度目标识别提供了有效的解决途径,同时因其理论较为丰富,涉及面... 目标识别的核心任务是判别图像的目标类型,通常采用机器学习算法完成,而鲁棒特征提取是其关键。传统人工提取的特征通常存在表达能力较弱的问题。深度学习理论的兴起为高精度目标识别提供了有效的解决途径,同时因其理论较为丰富,涉及面较广,给目标识别课程的讲授带来了新的挑战。通过设计具有专业特色的课程内容、构建知识链条、师生共建活跃课堂和全方位考核模式的探索等进行课程改革;在深度神经网络目标识别内容设计方面,侧重讲授关键概念、经典网络、研究进展及未来发展方向,为从事相关工作的教师和学生提供参考。 展开更多
关键词 教学改革 目标识别 人工智能 深度神经网络
下载PDF
基于微多普勒角点特征与Non-Local机制的穿墙雷达人体步态异常终止行为辨识技术
17
作者 杨小鹏 高炜程 渠晓东 《雷达学报(中英文)》 EI CSCD 北大核心 2024年第1期68-86,共19页
穿墙雷达能够穿透建筑物墙体,实现室内人体目标探测。利用深度学习提取不同肢节点的微多普勒特征,可以有效辨识障碍物后的人体行为。但是,当生成训练、验证集与生成测试集的受试者不同时,基于深度学习的行为识别方法测试准确率相对验证... 穿墙雷达能够穿透建筑物墙体,实现室内人体目标探测。利用深度学习提取不同肢节点的微多普勒特征,可以有效辨识障碍物后的人体行为。但是,当生成训练、验证集与生成测试集的受试者不同时,基于深度学习的行为识别方法测试准确率相对验证准确率往往较低,泛化能力较差。因此,该文提出一种基于微多普勒角点特征与Non-Local机制的穿墙雷达人体步态异常终止行为辨识技术。该方法利用Harris与Moravec检测器提取雷达图像上的角点特征,建立角点特征数据集;利用多链路并行卷积和Non-Local机制构建全局上下文信息提取网络,学习图像像素的全局分布特征;将全局上下文信息提取网络重复堆叠4次得到角点语义特征图,经多层感知机输出行为预测概率。仿真和实测结果表明,所提方法可以有效识别室内人体步行过程中存在的坐卧、跌倒等突发步态异常终止行为,在提升识别准确率、鲁棒性的前提下,有效控制泛化精度误差不超过6.4%。 展开更多
关键词 穿墙雷达 人体行为识别 微多普勒特征 角点特征 神经网络
下载PDF
基于雅可比显著图的电磁信号快速对抗攻击方法
18
作者 张剑 周侠 +1 位作者 张一然 王梓聪 《通信学报》 EI CSCD 北大核心 2024年第1期180-193,共14页
为了生成高质量的电磁信号对抗样本,提出了快速雅可比显著图攻击(FJSMA)方法。FJSMA通过计算攻击目标类别的雅可比矩阵,并根据该矩阵生成特征显著图,之后迭代选取显著性最强的特征点及其邻域内连续特征点添加扰动,同时引入单点扰动限制... 为了生成高质量的电磁信号对抗样本,提出了快速雅可比显著图攻击(FJSMA)方法。FJSMA通过计算攻击目标类别的雅可比矩阵,并根据该矩阵生成特征显著图,之后迭代选取显著性最强的特征点及其邻域内连续特征点添加扰动,同时引入单点扰动限制,最后生成对抗样本。实验结果表明,与雅可比显著图攻击方法相比,FJSMA在保持与之相同的高攻击成功率的同时,生成速度提升了约10倍,相似度提升了超过11%;与其他基于梯度的方法相比,攻击成功率提升了超过20%,相似度提升了20%~30%。 展开更多
关键词 深度神经网络 对抗样本 电磁信号调制识别 雅可比显著图 目标攻击
下载PDF
神经网络与水下目标识别研究型教学改革与创新实践
19
作者 李思纯 李杨 +2 位作者 张姜怡 周天 李松 《中国现代教育装备》 2024年第17期115-117,共3页
从舰船、潜艇、鱼雷、UUV、蛙人等水下目标识别在海洋国防战略中的重要性出发,以培养研究型、创新型、工程实践型人才为目标,以“为船为海为国防”的思想为引领,立足高校高水平研究生课程建设平台,改革神经网络与水下目标识别课程教学... 从舰船、潜艇、鱼雷、UUV、蛙人等水下目标识别在海洋国防战略中的重要性出发,以培养研究型、创新型、工程实践型人才为目标,以“为船为海为国防”的思想为引领,立足高校高水平研究生课程建设平台,改革神经网络与水下目标识别课程教学模式。将理论教学、科研研讨、工程实践相结合,开展神经网络与水下目标识别课程研究型教学改革与创新,培养专业知识基础扎实并具有科研素养的创新型人才。 展开更多
关键词 神经网络 水下目标识别 研究型教学 科教融合 创新实践
下载PDF
基于改进的GoogleNet-ResNet算法的路基病害智能分类方法
20
作者 陈登峰 杨小燕 +2 位作者 张温 何拓航 陈俊彤 《计算机测量与控制》 2024年第8期250-256,294,共8页
针对路基病害分类算法存在的复杂病害辨识难度大、多视图雷达图像特征利用不充分等问题,提出一种基于改进的GoogleNet-ResNet算法的路基病害智能分类方法;首先,引入坐标注意力和改进的Inception模块对GoogleNet网络结构进行优化;然后,... 针对路基病害分类算法存在的复杂病害辨识难度大、多视图雷达图像特征利用不充分等问题,提出一种基于改进的GoogleNet-ResNet算法的路基病害智能分类方法;首先,引入坐标注意力和改进的Inception模块对GoogleNet网络结构进行优化;然后,利用改进的GoogleNet学习c-scan数据特征剔除非目标病害,实现病害目标的粗分类;最后,将分类成病害的b-scan数据输入基于迁移学习的ResNet50,实现病害的细分类;实验表明,改进的GoogleNet进行病害粗分类的准确率可达到98.2%,检测速度可达90.9 fps;基于迁移学习的ResNet50进行病害细分类的准确率可达90.5%,检测速度可达52.6 fps;该算法的准确率比单独的改进的GoogleNet网络高10.1%,比单独的ResNet50网络高7.4%,有效地提高了道路路基病害的识别精度与效率。 展开更多
关键词 道路工程 路基病害识别 级联神经网络 多视图雷达图像 三维探地雷达
下载PDF
上一页 1 2 42 下一页 到第
使用帮助 返回顶部