The problem of radar target recognition using range profiles is investigated in this paper, based on a Radial Basis Function Network(RBFN). A preprocessing method is proposed, which performs amplitude average of the r...The problem of radar target recognition using range profiles is investigated in this paper, based on a Radial Basis Function Network(RBFN). A preprocessing method is proposed, which performs amplitude average of the range profiles to obtain more stable patterns. After pointing out the limitedness of traditional empirical formula, this paper also gives a method of estimating the shape parameter a of a Gaussian kernel function according-to spatial distribution of the training samples. It is shown that the method proposed in this paper offers promise for target recognition, from both the theoretical analysis and the experimental results of rotating platform imaging based on data acquired in a microwave anechoic chamber.展开更多
Considering the problem that the scattering echo images of airborne Doppler weather radar are often reduced by ground clutters,the accuracy and confidence of meteorology target detection are reduced.In this paper,a de...Considering the problem that the scattering echo images of airborne Doppler weather radar are often reduced by ground clutters,the accuracy and confidence of meteorology target detection are reduced.In this paper,a deep convolutional neural network(DCNN)is proposed for meteorology target detection and ground clutter suppression with a large collection of airborne weather radar images as network input.For each weather radar image,the corresponding digital elevation model(DEM)image is extracted on basis of the radar antenna scan-ning parameters and plane position,and is further fed to the net-work as a supplement for ground clutter suppression.The fea-tures of actual meteorology targets are learned in each bottle-neck module of the proposed network and convolved into deeper iterations in the forward propagation process.Then the network parameters are updated by the back propagation itera-tion of the training error.Experimental results on the real mea-sured images show that our proposed DCNN outperforms the counterparts in terms of six evaluation factors.Meanwhile,the network outputs are in good agreement with the expected mete-orology detection results(labels).It is demonstrated that the pro-posed network would have a promising meteorology observa-tion application with minimal effort on network variables or parameter changes.展开更多
Underwater target recognition is a key technology for underwater acoustic countermeasure.How to classify and recognize underwater targets according to the noise information of underwater targets has been a hot topic i...Underwater target recognition is a key technology for underwater acoustic countermeasure.How to classify and recognize underwater targets according to the noise information of underwater targets has been a hot topic in the field of underwater acoustic signals.In this paper,the deep learning model is applied to underwater target recognition.Improved anti-noise Power-Normalized Cepstral Coefficients(ia-PNCC)is proposed,based on PNCC applied to underwater noises.Multitaper and normalized Gammatone filter banks are applied to improve the anti-noise capacity.The method is combined with a convolutional neural network in order to recognize the underwater target.Experiment results show that the acoustic feature presented by ia-PNCC has lower noise and are wellsuited to underwater target recognition using a convolutional neural network.Compared with the combination of convolutional neural network with single acoustic feature,such as MFCC(Mel-scale Frequency Cepstral Coefficients)or LPCC(Linear Prediction Cepstral Coefficients),the combination of the ia-PNCC with a convolutional neural network offers better accuracy for underwater target recognition.展开更多
In radar systems,target tracking errors are mainly from motion models and nonlinear measurements.When we evaluate a tracking algorithm,its tracking accuracy is the main criterion.To improve the tracking accuracy,in th...In radar systems,target tracking errors are mainly from motion models and nonlinear measurements.When we evaluate a tracking algorithm,its tracking accuracy is the main criterion.To improve the tracking accuracy,in this paper we formulate the tracking problem into a regression model from measurements to target states.A tracking algorithm based on a modified deep feedforward neural network(MDFNN)is then proposed.In MDFNN,a filter layer is introduced to describe the temporal sequence relationship of the input measurement sequence,and the optimal measurement sequence size is analyzed.Simulations and field experimental data of the passive radar show that the accuracy of the proposed algorithm is better than those of extended Kalman filter(EKF),unscented Kalman filter(UKF),and recurrent neural network(RNN)based tracking methods under the considered scenarios.展开更多
This paper studies the generalization capability of feedforward neural networks (FNN).The mechanism of FNNs for classification is investigated from the geometric and probabilistic viewpoints. It is pointed out that th...This paper studies the generalization capability of feedforward neural networks (FNN).The mechanism of FNNs for classification is investigated from the geometric and probabilistic viewpoints. It is pointed out that the outputs of the output layer in the FNNs for classification correspond to the estimates of posteriori probability of the input pattern samples with desired outputs 1 or 0. The theorem for the generalized kernel function in the radial basis function networks (RBFN) is given. For an 2-layer perceptron network (2-LPN). an idea of using extended samples to improve generalization capability is proposed. Finally. the experimental results of radar target classification are given to verify the generaliztion capability of the RBFNs.展开更多
Based on pattern recognition theory and neural network technology, moving objects automatic detection and classification method integrating advanced wavelet analysis are discussed in detail. An algorithm of moving tar...Based on pattern recognition theory and neural network technology, moving objects automatic detection and classification method integrating advanced wavelet analysis are discussed in detail. An algorithm of moving targets pattern recognition on the combination of inter-frame difference and wavelet neural network is presented. The experimental results indicate that the designed BP wavelet network using this algorithm can recognize and classify moving targets rapidly and effectively.展开更多
Aiming at the problem that the average recognition degree of the moving target line is low with the traditional motion target behaviour recognition method, a motion recognition method based on deep convolutional neura...Aiming at the problem that the average recognition degree of the moving target line is low with the traditional motion target behaviour recognition method, a motion recognition method based on deep convolutional neural network is proposed in this paper. A target model of deep convolutional neural network is constructed and the basic unit of the network is designed by using the model. By setting the unit, the returned unit is calculated into the standard density diagram, and the position of the moving target is determined by the local maximum method to realize the behavior identification of the moving target. The experimental results show that the multi-parameter SICNN256 model is slightly better than other model structures. The average recognition rate and recognition rate of the moving target behavior recognition method based on deep convolutional neural network are higher than those of the traditional method, which proves its effectiveness. Since the frequency of single target is higher than that of multiple recognition and there is no target similarity recognition, similar target error detection cannot be excluded.展开更多
As a classic deep learning target detection algorithm,Faster R-CNN(region convolutional neural network)has been widely used in high-resolution synthetic aperture radar(SAR)and inverse SAR(ISAR)image detection.However,...As a classic deep learning target detection algorithm,Faster R-CNN(region convolutional neural network)has been widely used in high-resolution synthetic aperture radar(SAR)and inverse SAR(ISAR)image detection.However,for most common low-resolution radar plane position indicator(PPI)images,it is difficult to achieve good performance.In this paper,taking navigation radar PPI images as an example,a marine target detection method based on the Marine-Faster R-CNN algorithm is proposed in the case of complex background(e.g.,sea clutter)and target characteristics.The method performs feature extraction and target recognition on PPI images generated by radar echoes with the convolutional neural network(CNN).First,to improve the accuracy of detecting marine targets and reduce the false alarm rate,Faster R-CNN was optimized as the Marine-Faster R-CNN in five respects:new backbone network,anchor size,dense target detection,data sample balance,and scale normalization.Then,JRC(Japan Radio Co.,Ltd.)navigation radar was used to collect echo data under different conditions to build a marine target dataset.Finally,comparisons with the classic Faster R-CNN method and the constant false alarm rate(CFAR)algorithm proved that the proposed method is more accurate and robust,has stronger generalization ability,and can be applied to the detection of marine targets for navigation radar.Its performance was tested with datasets from different observation conditions(sea states,radar parameters,and different targets).展开更多
Target detection in the field of synthetic aperture radar(SAR) has attracted considerable attention of researchers in national defense technology worldwide,owing to its unique advantages like high resolution and large...Target detection in the field of synthetic aperture radar(SAR) has attracted considerable attention of researchers in national defense technology worldwide,owing to its unique advantages like high resolution and large scene image acquisition capabilities of SAR.However,due to strong speckle noise and low signal-to-noise ratio,it is difficult to extract representative features of target from SAR images,which greatly inhibits the effectiveness of traditional methods.In order to address the above problems,a framework called contextual rotation region-based convolutional neural network(RCNN) with multilayer fusion is proposed in this paper.Specifically,aimed to enable RCNN to perform target detection in large scene SAR images efficiently,maximum sliding strategy is applied to crop the large scene image into a series of sub-images before RCNN.Instead of using the highest-layer output for proposal generation and target detection,fusion feature maps with high resolution and rich semantic information are constructed by multilayer fusion strategy.Then,we put forwards rotation anchors to predict the minimum circumscribed rectangle of targets to reduce redundant detection region.Furthermore,shadow areas serve as contextual features to provide extraneous information for the detector identify and locate targets accurately.Experimental results on the simulated large scene SAR image dataset show that the proposed method achieves a satisfactory performance in large scene SAR target detection.展开更多
With the development of wireless technology, Frequency-Modulated Continuous Wave (FMCW) radar has increased sensing capability and can be used to recognize human activity. These applications have gained wide-spread at...With the development of wireless technology, Frequency-Modulated Continuous Wave (FMCW) radar has increased sensing capability and can be used to recognize human activity. These applications have gained wide-spread attention and become a hot research area. FMCW signals reflected by target activity can be collected, and human activity can be recognized based on the measurements. This paper focused on human activity recognition based on FMCW and DenseNet. We collected point clouds from FMCW and analyzed them to recognize human activity because different activities could lead to unique point cloud features. We built and trained the neural network to implement human activities using a FMCW signal. Firstly, this paper presented recent reviews about human activity recognition using wireless signals. Then, it introduced the basic concepts of FMCW radar and described the fundamental principles of the system using FMCW radar. We also provided the system framework, experiment scenario, and DenseNet neural network structure. Finally, we presented the experimental results and analyzed the accuracy of different neural network models. The system achieved recognition accuracy of 100 percent for five activities using the DenseNet. We concluded the paper by discussing the current issues and future research directions.展开更多
针对现有细粒度鸟类目标识别算法准确率不高的问题,提出一种鸟类目标检测算法YOLOv5-Bird。首先,在YOLOv5主干网络中引入基于混合域的坐标注意力(CA)机制,增大有价值的通道权重,以区分目标特征和背景中的冗余特征;其次,在原始主干网络...针对现有细粒度鸟类目标识别算法准确率不高的问题,提出一种鸟类目标检测算法YOLOv5-Bird。首先,在YOLOv5主干网络中引入基于混合域的坐标注意力(CA)机制,增大有价值的通道权重,以区分目标特征和背景中的冗余特征;其次,在原始主干网络中采用双层路由注意力(BRA)模块替换原网络中的部分C3模块,过滤低相关度的键值对信息,获得高效的长距离依赖关系;最后,使用WIoU(Wise-Intersection over Union)损失函数,增强算法对目标的定位能力。实验结果表明,YOLOv5-Bird在自建数据集上取得了82.8%的精确率和77.0%的召回率,比YOLOv5算法分别提高4.3和7.6个百分点,也优于增加其他注意力机制的算法。验证了YOLOv5-Bird在鸟类目标检测场景中具有较好的性能。展开更多
基金Supported by Foundation of Electronic Science Institute,Ministry of Electronic Industry
文摘The problem of radar target recognition using range profiles is investigated in this paper, based on a Radial Basis Function Network(RBFN). A preprocessing method is proposed, which performs amplitude average of the range profiles to obtain more stable patterns. After pointing out the limitedness of traditional empirical formula, this paper also gives a method of estimating the shape parameter a of a Gaussian kernel function according-to spatial distribution of the training samples. It is shown that the method proposed in this paper offers promise for target recognition, from both the theoretical analysis and the experimental results of rotating platform imaging based on data acquired in a microwave anechoic chamber.
基金supported by the China Ministry of Industry and Information Technology Foundation and Aeronautical Science Foundation of China(ASFC-201920007002)the National Key Research and Development Plan(2021YFB1600603)the Open Fund of Key Laboratory of Civil Aircraft Airworthiness Technology,Civil Aviation University of China.
文摘Considering the problem that the scattering echo images of airborne Doppler weather radar are often reduced by ground clutters,the accuracy and confidence of meteorology target detection are reduced.In this paper,a deep convolutional neural network(DCNN)is proposed for meteorology target detection and ground clutter suppression with a large collection of airborne weather radar images as network input.For each weather radar image,the corresponding digital elevation model(DEM)image is extracted on basis of the radar antenna scan-ning parameters and plane position,and is further fed to the net-work as a supplement for ground clutter suppression.The fea-tures of actual meteorology targets are learned in each bottle-neck module of the proposed network and convolved into deeper iterations in the forward propagation process.Then the network parameters are updated by the back propagation itera-tion of the training error.Experimental results on the real mea-sured images show that our proposed DCNN outperforms the counterparts in terms of six evaluation factors.Meanwhile,the network outputs are in good agreement with the expected mete-orology detection results(labels).It is demonstrated that the pro-posed network would have a promising meteorology observa-tion application with minimal effort on network variables or parameter changes.
基金This work was funded by the National Natural Science Foundation of China under Grant(Nos.61772152,61502037)the Basic Research Project(Nos.JCKY2016206B001,JCKY2014206C002,JCKY2017604C010)and the Technical Foundation Project(No.JSQB2017206C002).
文摘Underwater target recognition is a key technology for underwater acoustic countermeasure.How to classify and recognize underwater targets according to the noise information of underwater targets has been a hot topic in the field of underwater acoustic signals.In this paper,the deep learning model is applied to underwater target recognition.Improved anti-noise Power-Normalized Cepstral Coefficients(ia-PNCC)is proposed,based on PNCC applied to underwater noises.Multitaper and normalized Gammatone filter banks are applied to improve the anti-noise capacity.The method is combined with a convolutional neural network in order to recognize the underwater target.Experiment results show that the acoustic feature presented by ia-PNCC has lower noise and are wellsuited to underwater target recognition using a convolutional neural network.Compared with the combination of convolutional neural network with single acoustic feature,such as MFCC(Mel-scale Frequency Cepstral Coefficients)or LPCC(Linear Prediction Cepstral Coefficients),the combination of the ia-PNCC with a convolutional neural network offers better accuracy for underwater target recognition.
基金Project supported by the National Natural Science Foundation of China(Nos.61931015,62071335,and 61831009)the Natural Science Foundation of Hubei Province,China(No.2021CFA002)。
文摘In radar systems,target tracking errors are mainly from motion models and nonlinear measurements.When we evaluate a tracking algorithm,its tracking accuracy is the main criterion.To improve the tracking accuracy,in this paper we formulate the tracking problem into a regression model from measurements to target states.A tracking algorithm based on a modified deep feedforward neural network(MDFNN)is then proposed.In MDFNN,a filter layer is introduced to describe the temporal sequence relationship of the input measurement sequence,and the optimal measurement sequence size is analyzed.Simulations and field experimental data of the passive radar show that the accuracy of the proposed algorithm is better than those of extended Kalman filter(EKF),unscented Kalman filter(UKF),and recurrent neural network(RNN)based tracking methods under the considered scenarios.
文摘This paper studies the generalization capability of feedforward neural networks (FNN).The mechanism of FNNs for classification is investigated from the geometric and probabilistic viewpoints. It is pointed out that the outputs of the output layer in the FNNs for classification correspond to the estimates of posteriori probability of the input pattern samples with desired outputs 1 or 0. The theorem for the generalized kernel function in the radial basis function networks (RBFN) is given. For an 2-layer perceptron network (2-LPN). an idea of using extended samples to improve generalization capability is proposed. Finally. the experimental results of radar target classification are given to verify the generaliztion capability of the RBFNs.
文摘Based on pattern recognition theory and neural network technology, moving objects automatic detection and classification method integrating advanced wavelet analysis are discussed in detail. An algorithm of moving targets pattern recognition on the combination of inter-frame difference and wavelet neural network is presented. The experimental results indicate that the designed BP wavelet network using this algorithm can recognize and classify moving targets rapidly and effectively.
文摘Aiming at the problem that the average recognition degree of the moving target line is low with the traditional motion target behaviour recognition method, a motion recognition method based on deep convolutional neural network is proposed in this paper. A target model of deep convolutional neural network is constructed and the basic unit of the network is designed by using the model. By setting the unit, the returned unit is calculated into the standard density diagram, and the position of the moving target is determined by the local maximum method to realize the behavior identification of the moving target. The experimental results show that the multi-parameter SICNN256 model is slightly better than other model structures. The average recognition rate and recognition rate of the moving target behavior recognition method based on deep convolutional neural network are higher than those of the traditional method, which proves its effectiveness. Since the frequency of single target is higher than that of multiple recognition and there is no target similarity recognition, similar target error detection cannot be excluded.
基金supported by the Shandong Provincial Natural Science Foundation,China(No.ZR2021YQ43)the National Natural Science Foundation of China(Nos.U1933135 and 61931021)the Major Science and Technology Project of Shandong Province,China(No.2019JZZY010415)。
文摘As a classic deep learning target detection algorithm,Faster R-CNN(region convolutional neural network)has been widely used in high-resolution synthetic aperture radar(SAR)and inverse SAR(ISAR)image detection.However,for most common low-resolution radar plane position indicator(PPI)images,it is difficult to achieve good performance.In this paper,taking navigation radar PPI images as an example,a marine target detection method based on the Marine-Faster R-CNN algorithm is proposed in the case of complex background(e.g.,sea clutter)and target characteristics.The method performs feature extraction and target recognition on PPI images generated by radar echoes with the convolutional neural network(CNN).First,to improve the accuracy of detecting marine targets and reduce the false alarm rate,Faster R-CNN was optimized as the Marine-Faster R-CNN in five respects:new backbone network,anchor size,dense target detection,data sample balance,and scale normalization.Then,JRC(Japan Radio Co.,Ltd.)navigation radar was used to collect echo data under different conditions to build a marine target dataset.Finally,comparisons with the classic Faster R-CNN method and the constant false alarm rate(CFAR)algorithm proved that the proposed method is more accurate and robust,has stronger generalization ability,and can be applied to the detection of marine targets for navigation radar.Its performance was tested with datasets from different observation conditions(sea states,radar parameters,and different targets).
文摘Target detection in the field of synthetic aperture radar(SAR) has attracted considerable attention of researchers in national defense technology worldwide,owing to its unique advantages like high resolution and large scene image acquisition capabilities of SAR.However,due to strong speckle noise and low signal-to-noise ratio,it is difficult to extract representative features of target from SAR images,which greatly inhibits the effectiveness of traditional methods.In order to address the above problems,a framework called contextual rotation region-based convolutional neural network(RCNN) with multilayer fusion is proposed in this paper.Specifically,aimed to enable RCNN to perform target detection in large scene SAR images efficiently,maximum sliding strategy is applied to crop the large scene image into a series of sub-images before RCNN.Instead of using the highest-layer output for proposal generation and target detection,fusion feature maps with high resolution and rich semantic information are constructed by multilayer fusion strategy.Then,we put forwards rotation anchors to predict the minimum circumscribed rectangle of targets to reduce redundant detection region.Furthermore,shadow areas serve as contextual features to provide extraneous information for the detector identify and locate targets accurately.Experimental results on the simulated large scene SAR image dataset show that the proposed method achieves a satisfactory performance in large scene SAR target detection.
文摘With the development of wireless technology, Frequency-Modulated Continuous Wave (FMCW) radar has increased sensing capability and can be used to recognize human activity. These applications have gained wide-spread attention and become a hot research area. FMCW signals reflected by target activity can be collected, and human activity can be recognized based on the measurements. This paper focused on human activity recognition based on FMCW and DenseNet. We collected point clouds from FMCW and analyzed them to recognize human activity because different activities could lead to unique point cloud features. We built and trained the neural network to implement human activities using a FMCW signal. Firstly, this paper presented recent reviews about human activity recognition using wireless signals. Then, it introduced the basic concepts of FMCW radar and described the fundamental principles of the system using FMCW radar. We also provided the system framework, experiment scenario, and DenseNet neural network structure. Finally, we presented the experimental results and analyzed the accuracy of different neural network models. The system achieved recognition accuracy of 100 percent for five activities using the DenseNet. We concluded the paper by discussing the current issues and future research directions.
文摘针对现有细粒度鸟类目标识别算法准确率不高的问题,提出一种鸟类目标检测算法YOLOv5-Bird。首先,在YOLOv5主干网络中引入基于混合域的坐标注意力(CA)机制,增大有价值的通道权重,以区分目标特征和背景中的冗余特征;其次,在原始主干网络中采用双层路由注意力(BRA)模块替换原网络中的部分C3模块,过滤低相关度的键值对信息,获得高效的长距离依赖关系;最后,使用WIoU(Wise-Intersection over Union)损失函数,增强算法对目标的定位能力。实验结果表明,YOLOv5-Bird在自建数据集上取得了82.8%的精确率和77.0%的召回率,比YOLOv5算法分别提高4.3和7.6个百分点,也优于增加其他注意力机制的算法。验证了YOLOv5-Bird在鸟类目标检测场景中具有较好的性能。