For a netted radar system to counteract the deceptionelectronic countermeasure (ECM) signals, an effective electroniccounter countermeasure (ECCM) approach is proposed. The proposedapproach is realized based on th...For a netted radar system to counteract the deceptionelectronic countermeasure (ECM) signals, an effective electroniccounter countermeasure (ECCM) approach is proposed. The proposedapproach is realized based on the new signaling strategyfor the temporal pulse diversity, which makes use of transmittingpulses at each pulse repetition interval (PRI) with specific transmissionpulse block, and then following proper processing andinformation fusion. The existence of the deceptive ECM signal isconfirmed by one station, while the other stations in the nettedradar with same parameters applied the pulse diversity skillfully.Meanwhile, this method ensured that, pulse diversity can be appliedin netted radar. The performance assessment shows that theproposed solutions are effective in presence of ECM signals. Thisalgorithm has been demonstrated by simulations. The presentedsimulation results are in excellent consensus with theoretical predictions.展开更多
This paper proposes a suppression method of the deceptive false target(FT) produced by digital radio frequency memory(DRFM) in a multistatic radar system. The simulated deceptive false targets from DRFM cannot be easi...This paper proposes a suppression method of the deceptive false target(FT) produced by digital radio frequency memory(DRFM) in a multistatic radar system. The simulated deceptive false targets from DRFM cannot be easily discriminated and suppressed with traditional radar systems. Therefore, multistatic radar has attracted considerable interest as it provides improved performance against deception jamming due to several separated receivers. This paper first investigates the received signal model in the presence of multiple false targets in all receivers of the multistatic radar. Then, obtain the propagation time delays of the false targets based on the cross-correlation test of the received signals in different receivers. In doing so, local-density-based spatial clustering of applications with noise(LDBSCAN) is proposed to discriminate the FTs from the physical targets(PTs) after compensating the FTs time delays, where the FTs are approximately coincident with one position, while PTs possess small dispersion.Numerical simulations are carried out to demonstrate the feasibility and validness of the proposed method.展开更多
To provide a test platform for Electronic Warfare (EW) system, it is needed to simulate the radar received Intermediate Frequency (IF) signals and radar system functions.This letter gives a description of a radar syst...To provide a test platform for Electronic Warfare (EW) system, it is needed to simulate the radar received Intermediate Frequency (IF) signals and radar system functions.This letter gives a description of a radar system simulation software developed for frequencyphase scanning three-dimensional (3-D) radar. Experimental results prove that the software could be used for system evaluation and for training purposes as an attractive alternative to real EW system.展开更多
A new method of radar netting simulation with hardware-in-the-loop (HWIL) is introduced based on the idea of time reversal. It is the high authenticity, low cost and great simplification in design that the method does...A new method of radar netting simulation with hardware-in-the-loop (HWIL) is introduced based on the idea of time reversal. It is the high authenticity, low cost and great simplification in design that the method does provide. Along with several paragraphs about the vital features, the model of probability is explained in an analytical way to find out the feasibility of this method.展开更多
In this paper, the problem of parameter estimation of the combined radar signal adopting chaotic pulse position modulation (CPPM) and linear frequency modulation (LFM), which can be widely used in electronic count...In this paper, the problem of parameter estimation of the combined radar signal adopting chaotic pulse position modulation (CPPM) and linear frequency modulation (LFM), which can be widely used in electronic countermeasures, is addressed. An approach is proposed to estimate the initial frequency and chirp rate of the combined signal by exploiting the second-order cyclostationarity of the intra-pulse signal. In addition, under the condition of the equal pulse width, the pulse repetition interval (PRI) of the combined signal is predicted using the low-order Volterra adaptive filter. Simulations demonstrate that the proposed cyclic autocorrelation Hough transform (CHT) algorithm is theoretically tolerant to additive white Gaussian noise. When the value of signal noise to ratio (SNR) is less than 4 dB, it can still estimate the intra-pulse parameters well. When SNR = 3 dB, a good prediction of the PRI sequence can be achieved by the Volterra adaptive filter algorithm, even only 100 training samples.展开更多
基金supported by the National Defense Pre-Research Foundation of China(9140A07030713DZ02101)
文摘For a netted radar system to counteract the deceptionelectronic countermeasure (ECM) signals, an effective electroniccounter countermeasure (ECCM) approach is proposed. The proposedapproach is realized based on the new signaling strategyfor the temporal pulse diversity, which makes use of transmittingpulses at each pulse repetition interval (PRI) with specific transmissionpulse block, and then following proper processing andinformation fusion. The existence of the deceptive ECM signal isconfirmed by one station, while the other stations in the nettedradar with same parameters applied the pulse diversity skillfully.Meanwhile, this method ensured that, pulse diversity can be appliedin netted radar. The performance assessment shows that theproposed solutions are effective in presence of ECM signals. Thisalgorithm has been demonstrated by simulations. The presentedsimulation results are in excellent consensus with theoretical predictions.
文摘This paper proposes a suppression method of the deceptive false target(FT) produced by digital radio frequency memory(DRFM) in a multistatic radar system. The simulated deceptive false targets from DRFM cannot be easily discriminated and suppressed with traditional radar systems. Therefore, multistatic radar has attracted considerable interest as it provides improved performance against deception jamming due to several separated receivers. This paper first investigates the received signal model in the presence of multiple false targets in all receivers of the multistatic radar. Then, obtain the propagation time delays of the false targets based on the cross-correlation test of the received signals in different receivers. In doing so, local-density-based spatial clustering of applications with noise(LDBSCAN) is proposed to discriminate the FTs from the physical targets(PTs) after compensating the FTs time delays, where the FTs are approximately coincident with one position, while PTs possess small dispersion.Numerical simulations are carried out to demonstrate the feasibility and validness of the proposed method.
文摘To provide a test platform for Electronic Warfare (EW) system, it is needed to simulate the radar received Intermediate Frequency (IF) signals and radar system functions.This letter gives a description of a radar system simulation software developed for frequencyphase scanning three-dimensional (3-D) radar. Experimental results prove that the software could be used for system evaluation and for training purposes as an attractive alternative to real EW system.
基金the Ministerial Level Advanced Research Foundation
文摘A new method of radar netting simulation with hardware-in-the-loop (HWIL) is introduced based on the idea of time reversal. It is the high authenticity, low cost and great simplification in design that the method does provide. Along with several paragraphs about the vital features, the model of probability is explained in an analytical way to find out the feasibility of this method.
基金supported by the National Natural Science Foundation of China under Grant 61172116
文摘In this paper, the problem of parameter estimation of the combined radar signal adopting chaotic pulse position modulation (CPPM) and linear frequency modulation (LFM), which can be widely used in electronic countermeasures, is addressed. An approach is proposed to estimate the initial frequency and chirp rate of the combined signal by exploiting the second-order cyclostationarity of the intra-pulse signal. In addition, under the condition of the equal pulse width, the pulse repetition interval (PRI) of the combined signal is predicted using the low-order Volterra adaptive filter. Simulations demonstrate that the proposed cyclic autocorrelation Hough transform (CHT) algorithm is theoretically tolerant to additive white Gaussian noise. When the value of signal noise to ratio (SNR) is less than 4 dB, it can still estimate the intra-pulse parameters well. When SNR = 3 dB, a good prediction of the PRI sequence can be achieved by the Volterra adaptive filter algorithm, even only 100 training samples.