The plastic work-heat conversion coefficient is one key parameter for studying the work-heat conversion under dynamic deformation of materials. To explore this coefficient of 7075-T651 aluminum alloy under dynamic com...The plastic work-heat conversion coefficient is one key parameter for studying the work-heat conversion under dynamic deformation of materials. To explore this coefficient of 7075-T651 aluminum alloy under dynamic compression, dynamic compression experiments using the Hopkinson bar under four groups of strain rates were conducted, and the temperature signals were measured by constructing a transient infrared temperature measurement system. According to stress versus strain data as well as the corresponding temperature data obtained through the experiments, the influences of the strain and the strain rate on the coefficient of plastic work converted to heat were analyzed.The experimental results show that the coefficient of plastic work converted to heat of 7075-T651 aluminum alloy is not a constant at the range of 0.85–1 and is closely related to the strain and the strain rate. The change of internal structure of material under high strain rate reduces its energy storage capacity, and makes almost all plastic work convert into heat.展开更多
Passive Fourier transform infrared (FTIR) remote sensing measurement of chemical gas cloud is a vital technology. It takes an important part in many fields for the detection of released gases. The principle of conce...Passive Fourier transform infrared (FTIR) remote sensing measurement of chemical gas cloud is a vital technology. It takes an important part in many fields for the detection of released gases. The principle of concentration measurement is based on the Beer-Lambert law. Unlike the active measurement, for the passive remote sensing, in most cases, the difference between the temperature of the gas cloud and the brightness temperature of the background is usually a few kelvins. The gas cloud emission is almost equal to the background emission, thereby the emission of the gas cloud cannot be ignored. The concentration retrieval algorithm is quite different from the active measurement. In this paper, the concentration retrieval algorithm for the passive FTIR remote measurement of gas cloud is presented in detail, which involves radiative transfer model, radiometric calibration, absorption coefficient calculation, et al. The background spectrum has a broad feature, which is a slowly varying function of frequency. In this paper, the background spectrum is fitted with a polynomial by using the Levenberg-Marquardt method which is a kind of nonlinear least squares fitting algorithm. No background spectra are required. Thus, this method allows mobile, real-time and fast measurements of gas clouds.展开更多
Although near infrared (NIR) spectroscopy has been evaluated for numerous applications, the number of actual on-line or even on-site industrial applications seems to be very limited. In the present paper, the attempts...Although near infrared (NIR) spectroscopy has been evaluated for numerous applications, the number of actual on-line or even on-site industrial applications seems to be very limited. In the present paper, the attempts to produce online predictions of the chemical oxygen demand (COD) in wastewater from a pulp and paper mill using NIR spectroscopy are described. The task was perceived as very challenging, but with a root mean square error of prediction of 149 mg/l, roughly corresponding to 1/10 of the studied concentration interval, this attempt was deemed as successful. This result was obtained by using partial least squares model regression, interpolated reference values for calibration purposes, and by evenly distributing the calibration data in the concentration space. This work may also represent the first industrial application of online COD measurements in wastewater using NIR spectroscopy.展开更多
A high precision, high antijamming multipoint infrared telemetry system was developed to measure the piston temperature in internal combustion engine. The temperature at the measuring point is converted into correspon...A high precision, high antijamming multipoint infrared telemetry system was developed to measure the piston temperature in internal combustion engine. The temperature at the measuring point is converted into corresponding voltage signal by the thermo-couple first. Then after the V/F stage, the voltage signal is converted into the frequency signal to drive the infrared light-emitting diode to transmit infrared pulses. At the receiver end, a photosensitive audion receives the infrared pulses. After conversion, the voltage recorded by the receiver stands for the magnitude of temperature at the measuring point. Test results of the system indicate that the system is practical and the system can perform multipoint looping temperature measurements for the piston.展开更多
To determine the performance and data accuracy of the 50 MHz Beijing Mesosphere-Stratosphere-Troposphere (MST) radar, comparisons of radar measured horizontal winds in the height range 3-25 km with radiosonde observ...To determine the performance and data accuracy of the 50 MHz Beijing Mesosphere-Stratosphere-Troposphere (MST) radar, comparisons of radar measured horizontal winds in the height range 3-25 km with radiosonde observations were made during 2012. A total of 427 profiles and 15 210 data pairs were compared. There was very good agreement between the two types of measurement. Standard deviations of difference (mean difference) for wind direction, wind speed, zonal wind and meridional wind were 24.86° (0.77°), 3.37 (-0.44), 3.33 (-0.32) and 3.58 (-0.25) m s^-1, respectively. The annual standard deviations of differences for wind speed were within 2.5-3 m s^-1 at all heights apart from 10-15 km, the area of strong winds, where the values were 3-4 m s^-1. The relatively larger differences were mainly due to wind field variations in height regions with larger wind speeds, stronger wind shear and the quasi-zero wind layer. A lower MST radar SNR and a lower percentage of data pairs compared will also result in larger inconsistencies. Importantly, this study found that differences between the MST radar and radiosonde observations did not simply increase when balloon drift resulted in an increase in the real-time distance between the two instruments, but also depended on spatiotemporal structures and their respective positions in the contemporary synoptic systems. In this sense, the MST radar was shown to be a unique observation facility for atmospheric dynamics studies, as well as an operational meteorological observation system with a high temporal and vertical resolution.展开更多
A thin radar-infrared stealth-compatible structure with reflectivity below -10 dB in the whole radar X wave band and infrared emissivity less than 0.3 in the infrared region of 8μm-14 μm is reported. The designed st...A thin radar-infrared stealth-compatible structure with reflectivity below -10 dB in the whole radar X wave band and infrared emissivity less than 0.3 in the infrared region of 8μm-14 μm is reported. The designed stealth-compatible structure consists of metallic frequency selective surface (MFSS), resistive frequency selective surface (RFSS), and metal backing from the top down, and it is only 2. l-mm thick. The MFSS is made up of some divided low infrared emissivity metal copper films, and the RFSS consists of a capacitive array of square resistive patches. They are placed close together, working as an admittance sheet because of a mutual influence between them, and the equivalent admittance sheet greatly reduces the thickness of the whole structure. The proposed stealth-compatible structure is verified both by simulations and by experimental results. These results indicate that our proposed stealth-compatible structure has potential applications in stealth fields.展开更多
In order to study the evolution of the freezing fringe and final lenses of frost susceptible soils and advance the understanding of frost heave and mechanism of frost heave control, we used an open one-dimensional fro...In order to study the evolution of the freezing fringe and final lenses of frost susceptible soils and advance the understanding of frost heave and mechanism of frost heave control, we used an open one-dimensional frost heave test system of infrared radiation technology, instead of a traditional thermistor method. Temperatures of the freezing fringe and segregated ice were measured in a non-contact mode. The results show that accurate and precise temperatures of ice segregation can be obtained by infrared thermal imaging systems. A self-developed inversion program inverted the temperature field of frozen soils. Based on our analysis of temperature variation in segregated ice and our study of the relationship between temperature and rate of ice segregation in cooling and warming processes during intermittent freezing, the mechanism of decreasing frost heave of frozen soils by controlling the growth of final lenses with an intermittent freezing mode, can be explained properly.展开更多
Infrared(IR) small target detection is one of the key technologies of infrared search and track(IRST)systems. Existing methods have some limitations in detection performance, especially when the target size is irregul...Infrared(IR) small target detection is one of the key technologies of infrared search and track(IRST)systems. Existing methods have some limitations in detection performance, especially when the target size is irregular or the background is complex. In this paper, we propose a pixel-level local contrast measure(PLLCM), which can subdivide small targets and backgrounds at pixel level simultaneously.With pixel-level segmentation, the difference between the target and the background becomes more obvious, which helps to improve the detection performance. First, we design a multiscale sliding window to quickly extract candidate target pixels. Then, a local window based on random walker(RW) is designed for pixel-level target segmentation. After that, PLLCM incorporating probability weights and scale constraints is proposed to accurately measure local contrast and suppress various types of background interference. Finally, an adaptive threshold operation is applied to separate the target from the PLLCM enhanced map. Experimental results show that the proposed method has a higher detection rate and a lower false alarm rate than the baseline algorithms, while achieving a high speed.展开更多
Fundamental definitions of distance and velocity in radar measurement principle are examined and revised from strict theoretical point of view. Synchronization scheme - for clocks in uniform, translatory relative moti...Fundamental definitions of distance and velocity in radar measurement principle are examined and revised from strict theoretical point of view. Synchronization scheme - for clocks in uniform, translatory relative motion is introduced as theoretical foundation for GPS and GLONASS type navigation and positioning technology. Traditional definitions of two-way radar measurement, based on arithmetic mean vlaue concept, turn out to be special cases of revised definitions for one-way radar measurement, based on geometric mean concept, derived from synchronization of moving clocks in accordance with the principle of relativity. The essential physical meaning of Lorentz transformation is interpreted in terms of radar measured parameters. Invariance or absoluteness of four dimensional interval turns out to be invariance or absoluteness of geometric mean time interval. The Lorentz factor turns out to be ratio of geometric mean and arithmetic mean time intervals in terms of radar measured parameters. Theoretical results are illustrated transparently by numerical examples. A crucial experiment for direct testing of the second postulate of special relativity by means of GPS of GLONASS type technology is proposed in this paper.展开更多
The first troposphere wind profiling radar in China has been in operation. The paper describes the radar parameters and characteristics with some experimental results presented.
Ballistic target recognition occupies a unique and important position in many application fields of target recognition because of its challenge and important position of ballistic missile defense in national security;...Ballistic target recognition occupies a unique and important position in many application fields of target recognition because of its challenge and important position of ballistic missile defense in national security;recognition time of defense system becomes very limited because of ballistic missile high-speed flight;recognition distance of defense system is also due to stealth technology. The integrated application of active jamming and passive decoy greatly increases the difficulty of identification of defense system. Because of its special status and challenge, ballistic target recognition has attracted wide attention of researchers at home and abroad, making it one of the most important issues in infrared target recognition research at home and abroad. In this paper, the infrared characteristics of a ballistic missile warhead target/decoy are analyzed, and the corresponding penetration measures are put forward according to the analysis results.展开更多
In the terahertz band,the dispersive characteristic of dielectric material is one of the major problems in the scaled radar cross section(RCS)measurement,which is inconsistent with the electrodynamics similitude deduc...In the terahertz band,the dispersive characteristic of dielectric material is one of the major problems in the scaled radar cross section(RCS)measurement,which is inconsistent with the electrodynamics similitude deducted according to the Maxwell’s equations.Based on the high-frequency estimation method of physical optics(PO),a scaled RCS measurement method for lossy objects is proposed through dynamically matching the reflection coefficients according to the distribution of the object facets.Simulations of the model of SLICY are conducted,and the inversed RCS of the lossy prototype is obtained using the proposed method.Comparing the inversed RCS with the calculated results,the validity of the proposed method is demonstrated.The proposed method provides an effective solution to the scaled RCS measurement for lossy objects in the THz band.展开更多
To detect overlapped echoes due to the thin pavement layers,we present a thickness measurement approach for the very thin layer of pavement structures.The term "thin" is relative to the incident wavelength o...To detect overlapped echoes due to the thin pavement layers,we present a thickness measurement approach for the very thin layer of pavement structures.The term "thin" is relative to the incident wavelength or pulse.By means of independent component analysis of noisy signals received by a single radar sensor,the overlapped echoes can be successfully separated.Once the echoes from the top and bottom side of a thin layer have been separated,the time delay and the layer thickness determination follow immediately.Results of the simulation and real data verify the feasibility of the presented method.展开更多
In order to measure the range, angle, and Doppler frequency of the target without any synchronization in the bistatic radar, a novel complete parameter estimation method based on separability of a pair of Linear Frequ...In order to measure the range, angle, and Doppler frequency of the target without any synchronization in the bistatic radar, a novel complete parameter estimation method based on separability of a pair of Linear Frequency Modulation (LFM) signal is presented. The Doppler fre-quency is measured by the time difference between two peak positions corresponding to the positive and the negative LFM return signal respectively. Direction Of Departures (DODs) and Direction Of Arrivals (DOAs) of the target are estimated by constructing a special eigenmatrix in which the es-timated angles can be extracted from the eigenvalue or the eigenvector. The target position can be located in the presence of the estimated DODs, DOAs and the signal delay difference between the echo and the directive wave signal in Multiple Input Multiple Output (MIMO) bistatic radar without any synchronization. The correctness and effectiveness of the proposed method are verified by the computer simulation.展开更多
The paper mainly introduces concrete design of the hardware and program steps of Infrared Telecontrol Code Measuring Device based on AT89C51RC. In addition, it also gives out the design circuit of infrared transmitter...The paper mainly introduces concrete design of the hardware and program steps of Infrared Telecontrol Code Measuring Device based on AT89C51RC. In addition, it also gives out the design circuit of infrared transmitter and infrared receiver and the typical design circuit of the system, and the application method as well. Through particularly researching on sending and receiving technology of in- frared, a precise method decoding the signal send by infrared controller and its circuit is designed.展开更多
Dual-frequency and multi-polarization spaceborne rain and cloud measuring radar is the inevitable trend of remote sensing techniques.Techniques of new generation dual-frequency and multi-polarization spaceborne rain a...Dual-frequency and multi-polarization spaceborne rain and cloud measuring radar is the inevitable trend of remote sensing techniques.Techniques of new generation dual-frequency and multi-polarization spaceborne rain and cloud measuring radar are studied systematically.Radar block diagram and main parameters are presented.Antenna subsystem scheme is analyzed and antenna parameters are proposed.Central electronic device subsystem scheme is given and data rate of spaceborne radar is calculated.This paper is a meaningful try for carrying out spaceborne rain and cloud measuring radar design,acting as a reference to Chinese spaceborne rain and cloud measuring radar design and production in future.展开更多
The principle and method of both radar target imaging and velocity measurement simultaneously based on step frequency waveforms is presented. Velocity compensation is necessary in order to obtain the good High resolut...The principle and method of both radar target imaging and velocity measurement simultaneously based on step frequency waveforms is presented. Velocity compensation is necessary in order to obtain the good High resolution range profile since this waveform is greatly sensitive to the Doppler shift. The velocity measurement performance of the four styles is analyzed with two pulse trains consisted of positive and negative step frequency waveforms. The velocity of targets can be estimated first coarsely by using the pulse trains with positive-positive step frequency combination, and then fine by positive-negative combination. Simulation results indicate that the method can accomplish the accurate estimation of the velocity with efficient computation and good anti-noise performance and obtain the good HRRP simultaneously.展开更多
In this paper, we present simultaneous multiple pollutant gases (CO2, CO, and NO) measurements by using the non-dispersive infrared (NDIR) technique. A cross-correlation correction method is proposed and used to c...In this paper, we present simultaneous multiple pollutant gases (CO2, CO, and NO) measurements by using the non-dispersive infrared (NDIR) technique. A cross-correlation correction method is proposed and used to correct the cross-interferences among the target gases. The calculation of calibration curves is based on least-square fittings with third-order polynomials, and the interference functions are approximated by linear curves. The pure absorbance of each gas is obtained by solving three simultaneous equations using the fitted interference functions. Through the interference correction, the signal created at each filter channel only depends on the absorption of the intended gas. Gas mixture samples with different concentrations of CO2, CO, and NO are pumped into the sample cell for analysis. The results show that the measurement error of each gas is less than 4.5%.展开更多
Radar cross section (RCS) of non-sphericai raindrops is calculated by using the software CST based on finite integral method and compared with RCS of spherical raindrops. The revised factor of non-spherical raindrop...Radar cross section (RCS) of non-sphericai raindrops is calculated by using the software CST based on finite integral method and compared with RCS of spherical raindrops. The revised factor of non-spherical raindrops is obtained. The radar reflectivity with precipitation change of four distribution models of M-P, Gamma, JD and JT combining the revised factor is gotten using trapezoidal integration. When the infuence of non-spherical raindrops is considered, the accuracy of precipitation measurement of four distribution models can be separately improved 8.77%, 8.47%, 10.53% and 8.04% in the case of rain intensity is 100 mm/h.展开更多
基金supported by the National Nature Science Foundation of China (Grants 11132011 and 11472288)
文摘The plastic work-heat conversion coefficient is one key parameter for studying the work-heat conversion under dynamic deformation of materials. To explore this coefficient of 7075-T651 aluminum alloy under dynamic compression, dynamic compression experiments using the Hopkinson bar under four groups of strain rates were conducted, and the temperature signals were measured by constructing a transient infrared temperature measurement system. According to stress versus strain data as well as the corresponding temperature data obtained through the experiments, the influences of the strain and the strain rate on the coefficient of plastic work converted to heat were analyzed.The experimental results show that the coefficient of plastic work converted to heat of 7075-T651 aluminum alloy is not a constant at the range of 0.85–1 and is closely related to the strain and the strain rate. The change of internal structure of material under high strain rate reduces its energy storage capacity, and makes almost all plastic work convert into heat.
基金Project supported by the National Natural Science Foundation of China (Grant No 083H311501)the National High Technology Research and Development Program of China (Grant No 073H3f1514)
文摘Passive Fourier transform infrared (FTIR) remote sensing measurement of chemical gas cloud is a vital technology. It takes an important part in many fields for the detection of released gases. The principle of concentration measurement is based on the Beer-Lambert law. Unlike the active measurement, for the passive remote sensing, in most cases, the difference between the temperature of the gas cloud and the brightness temperature of the background is usually a few kelvins. The gas cloud emission is almost equal to the background emission, thereby the emission of the gas cloud cannot be ignored. The concentration retrieval algorithm is quite different from the active measurement. In this paper, the concentration retrieval algorithm for the passive FTIR remote measurement of gas cloud is presented in detail, which involves radiative transfer model, radiometric calibration, absorption coefficient calculation, et al. The background spectrum has a broad feature, which is a slowly varying function of frequency. In this paper, the background spectrum is fitted with a polynomial by using the Levenberg-Marquardt method which is a kind of nonlinear least squares fitting algorithm. No background spectra are required. Thus, this method allows mobile, real-time and fast measurements of gas clouds.
文摘Although near infrared (NIR) spectroscopy has been evaluated for numerous applications, the number of actual on-line or even on-site industrial applications seems to be very limited. In the present paper, the attempts to produce online predictions of the chemical oxygen demand (COD) in wastewater from a pulp and paper mill using NIR spectroscopy are described. The task was perceived as very challenging, but with a root mean square error of prediction of 149 mg/l, roughly corresponding to 1/10 of the studied concentration interval, this attempt was deemed as successful. This result was obtained by using partial least squares model regression, interpolated reference values for calibration purposes, and by evenly distributing the calibration data in the concentration space. This work may also represent the first industrial application of online COD measurements in wastewater using NIR spectroscopy.
文摘A high precision, high antijamming multipoint infrared telemetry system was developed to measure the piston temperature in internal combustion engine. The temperature at the measuring point is converted into corresponding voltage signal by the thermo-couple first. Then after the V/F stage, the voltage signal is converted into the frequency signal to drive the infrared light-emitting diode to transmit infrared pulses. At the receiver end, a photosensitive audion receives the infrared pulses. After conversion, the voltage recorded by the receiver stands for the magnitude of temperature at the measuring point. Test results of the system indicate that the system is practical and the system can perform multipoint looping temperature measurements for the piston.
基金supported by National Natural Science Foundation of China(NSFC Project No.41127901)the Chinese Meridian Project
文摘To determine the performance and data accuracy of the 50 MHz Beijing Mesosphere-Stratosphere-Troposphere (MST) radar, comparisons of radar measured horizontal winds in the height range 3-25 km with radiosonde observations were made during 2012. A total of 427 profiles and 15 210 data pairs were compared. There was very good agreement between the two types of measurement. Standard deviations of difference (mean difference) for wind direction, wind speed, zonal wind and meridional wind were 24.86° (0.77°), 3.37 (-0.44), 3.33 (-0.32) and 3.58 (-0.25) m s^-1, respectively. The annual standard deviations of differences for wind speed were within 2.5-3 m s^-1 at all heights apart from 10-15 km, the area of strong winds, where the values were 3-4 m s^-1. The relatively larger differences were mainly due to wind field variations in height regions with larger wind speeds, stronger wind shear and the quasi-zero wind layer. A lower MST radar SNR and a lower percentage of data pairs compared will also result in larger inconsistencies. Importantly, this study found that differences between the MST radar and radiosonde observations did not simply increase when balloon drift resulted in an increase in the real-time distance between the two instruments, but also depended on spatiotemporal structures and their respective positions in the contemporary synoptic systems. In this sense, the MST radar was shown to be a unique observation facility for atmospheric dynamics studies, as well as an operational meteorological observation system with a high temporal and vertical resolution.
基金Project supported by the National Natural Science Foundation of China (Grant No.51202291)
文摘A thin radar-infrared stealth-compatible structure with reflectivity below -10 dB in the whole radar X wave band and infrared emissivity less than 0.3 in the infrared region of 8μm-14 μm is reported. The designed stealth-compatible structure consists of metallic frequency selective surface (MFSS), resistive frequency selective surface (RFSS), and metal backing from the top down, and it is only 2. l-mm thick. The MFSS is made up of some divided low infrared emissivity metal copper films, and the RFSS consists of a capacitive array of square resistive patches. They are placed close together, working as an admittance sheet because of a mutual influence between them, and the equivalent admittance sheet greatly reduces the thickness of the whole structure. The proposed stealth-compatible structure is verified both by simulations and by experimental results. These results indicate that our proposed stealth-compatible structure has potential applications in stealth fields.
基金supported by the Key Project of the National Natural Science Foundation of China (No. 50534040)the Project of the National Natural Science Foundation of China (No. 40471021)
文摘In order to study the evolution of the freezing fringe and final lenses of frost susceptible soils and advance the understanding of frost heave and mechanism of frost heave control, we used an open one-dimensional frost heave test system of infrared radiation technology, instead of a traditional thermistor method. Temperatures of the freezing fringe and segregated ice were measured in a non-contact mode. The results show that accurate and precise temperatures of ice segregation can be obtained by infrared thermal imaging systems. A self-developed inversion program inverted the temperature field of frozen soils. Based on our analysis of temperature variation in segregated ice and our study of the relationship between temperature and rate of ice segregation in cooling and warming processes during intermittent freezing, the mechanism of decreasing frost heave of frozen soils by controlling the growth of final lenses with an intermittent freezing mode, can be explained properly.
基金supported by the National Natural Science Foundation of China under Grant 62003247, Grant 62075169, and Grant 62061160370。
文摘Infrared(IR) small target detection is one of the key technologies of infrared search and track(IRST)systems. Existing methods have some limitations in detection performance, especially when the target size is irregular or the background is complex. In this paper, we propose a pixel-level local contrast measure(PLLCM), which can subdivide small targets and backgrounds at pixel level simultaneously.With pixel-level segmentation, the difference between the target and the background becomes more obvious, which helps to improve the detection performance. First, we design a multiscale sliding window to quickly extract candidate target pixels. Then, a local window based on random walker(RW) is designed for pixel-level target segmentation. After that, PLLCM incorporating probability weights and scale constraints is proposed to accurately measure local contrast and suppress various types of background interference. Finally, an adaptive threshold operation is applied to separate the target from the PLLCM enhanced map. Experimental results show that the proposed method has a higher detection rate and a lower false alarm rate than the baseline algorithms, while achieving a high speed.
文摘Fundamental definitions of distance and velocity in radar measurement principle are examined and revised from strict theoretical point of view. Synchronization scheme - for clocks in uniform, translatory relative motion is introduced as theoretical foundation for GPS and GLONASS type navigation and positioning technology. Traditional definitions of two-way radar measurement, based on arithmetic mean vlaue concept, turn out to be special cases of revised definitions for one-way radar measurement, based on geometric mean concept, derived from synchronization of moving clocks in accordance with the principle of relativity. The essential physical meaning of Lorentz transformation is interpreted in terms of radar measured parameters. Invariance or absoluteness of four dimensional interval turns out to be invariance or absoluteness of geometric mean time interval. The Lorentz factor turns out to be ratio of geometric mean and arithmetic mean time intervals in terms of radar measured parameters. Theoretical results are illustrated transparently by numerical examples. A crucial experiment for direct testing of the second postulate of special relativity by means of GPS of GLONASS type technology is proposed in this paper.
文摘The first troposphere wind profiling radar in China has been in operation. The paper describes the radar parameters and characteristics with some experimental results presented.
文摘Ballistic target recognition occupies a unique and important position in many application fields of target recognition because of its challenge and important position of ballistic missile defense in national security;recognition time of defense system becomes very limited because of ballistic missile high-speed flight;recognition distance of defense system is also due to stealth technology. The integrated application of active jamming and passive decoy greatly increases the difficulty of identification of defense system. Because of its special status and challenge, ballistic target recognition has attracted wide attention of researchers at home and abroad, making it one of the most important issues in infrared target recognition research at home and abroad. In this paper, the infrared characteristics of a ballistic missile warhead target/decoy are analyzed, and the corresponding penetration measures are put forward according to the analysis results.
基金supported by the National Natural Science Foundation of China(Grant Nos.61871386,61971427,62035014,and 61921001)the Natural Science Fund for Distinguished Young Scholars of Hunan Province,China(Grant No.2019JJ20022)。
文摘In the terahertz band,the dispersive characteristic of dielectric material is one of the major problems in the scaled radar cross section(RCS)measurement,which is inconsistent with the electrodynamics similitude deducted according to the Maxwell’s equations.Based on the high-frequency estimation method of physical optics(PO),a scaled RCS measurement method for lossy objects is proposed through dynamically matching the reflection coefficients according to the distribution of the object facets.Simulations of the model of SLICY are conducted,and the inversed RCS of the lossy prototype is obtained using the proposed method.Comparing the inversed RCS with the calculated results,the validity of the proposed method is demonstrated.The proposed method provides an effective solution to the scaled RCS measurement for lossy objects in the THz band.
文摘To detect overlapped echoes due to the thin pavement layers,we present a thickness measurement approach for the very thin layer of pavement structures.The term "thin" is relative to the incident wavelength or pulse.By means of independent component analysis of noisy signals received by a single radar sensor,the overlapped echoes can be successfully separated.Once the echoes from the top and bottom side of a thin layer have been separated,the time delay and the layer thickness determination follow immediately.Results of the simulation and real data verify the feasibility of the presented method.
基金Supported by National Natural Science Foundation of China (No. 60601016)
文摘In order to measure the range, angle, and Doppler frequency of the target without any synchronization in the bistatic radar, a novel complete parameter estimation method based on separability of a pair of Linear Frequency Modulation (LFM) signal is presented. The Doppler fre-quency is measured by the time difference between two peak positions corresponding to the positive and the negative LFM return signal respectively. Direction Of Departures (DODs) and Direction Of Arrivals (DOAs) of the target are estimated by constructing a special eigenmatrix in which the es-timated angles can be extracted from the eigenvalue or the eigenvector. The target position can be located in the presence of the estimated DODs, DOAs and the signal delay difference between the echo and the directive wave signal in Multiple Input Multiple Output (MIMO) bistatic radar without any synchronization. The correctness and effectiveness of the proposed method are verified by the computer simulation.
文摘The paper mainly introduces concrete design of the hardware and program steps of Infrared Telecontrol Code Measuring Device based on AT89C51RC. In addition, it also gives out the design circuit of infrared transmitter and infrared receiver and the typical design circuit of the system, and the application method as well. Through particularly researching on sending and receiving technology of in- frared, a precise method decoding the signal send by infrared controller and its circuit is designed.
基金Supported by Horizontal Program of Space Long March Rocket Technology Co. Ltd (500036)
文摘Dual-frequency and multi-polarization spaceborne rain and cloud measuring radar is the inevitable trend of remote sensing techniques.Techniques of new generation dual-frequency and multi-polarization spaceborne rain and cloud measuring radar are studied systematically.Radar block diagram and main parameters are presented.Antenna subsystem scheme is analyzed and antenna parameters are proposed.Central electronic device subsystem scheme is given and data rate of spaceborne radar is calculated.This paper is a meaningful try for carrying out spaceborne rain and cloud measuring radar design,acting as a reference to Chinese spaceborne rain and cloud measuring radar design and production in future.
文摘The principle and method of both radar target imaging and velocity measurement simultaneously based on step frequency waveforms is presented. Velocity compensation is necessary in order to obtain the good High resolution range profile since this waveform is greatly sensitive to the Doppler shift. The velocity measurement performance of the four styles is analyzed with two pulse trains consisted of positive and negative step frequency waveforms. The velocity of targets can be estimated first coarsely by using the pulse trains with positive-positive step frequency combination, and then fine by positive-negative combination. Simulation results indicate that the method can accomplish the accurate estimation of the velocity with efficient computation and good anti-noise performance and obtain the good HRRP simultaneously.
基金Project supported by the National High Technology Research and Development Program of China (Grant No. 2009AA063006)the National Natural Science Foundation of China (Grant No. 40805015)the Excellent Youth Scientific Foundation of Anhui Province, China (Grant No. 10040606Y28)
文摘In this paper, we present simultaneous multiple pollutant gases (CO2, CO, and NO) measurements by using the non-dispersive infrared (NDIR) technique. A cross-correlation correction method is proposed and used to correct the cross-interferences among the target gases. The calculation of calibration curves is based on least-square fittings with third-order polynomials, and the interference functions are approximated by linear curves. The pure absorbance of each gas is obtained by solving three simultaneous equations using the fitted interference functions. Through the interference correction, the signal created at each filter channel only depends on the absorption of the intended gas. Gas mixture samples with different concentrations of CO2, CO, and NO are pumped into the sample cell for analysis. The results show that the measurement error of each gas is less than 4.5%.
基金Project supported by the Shanghai Leading Academic Discipline Project (Grant No.S30108)the National Natural Science Foundation of China (Grant No.61071185)+1 种基金the Key Technology Research and Development Program of Science and Technology Commission of Shanghai Municipality (Grant No.10511501702)the Science and Technology Commission of Shanghai Municipality (Grant Nos.08590700500, 08DZ2231100)
文摘Radar cross section (RCS) of non-sphericai raindrops is calculated by using the software CST based on finite integral method and compared with RCS of spherical raindrops. The revised factor of non-spherical raindrops is obtained. The radar reflectivity with precipitation change of four distribution models of M-P, Gamma, JD and JT combining the revised factor is gotten using trapezoidal integration. When the infuence of non-spherical raindrops is considered, the accuracy of precipitation measurement of four distribution models can be separately improved 8.77%, 8.47%, 10.53% and 8.04% in the case of rain intensity is 100 mm/h.