Rainfall prediction remains one of the most challenging problems in weather forecasting. In order to improve high-resolution quantitative precipitation forecasts (QPF), a new procedure for assimilating rainfall rate...Rainfall prediction remains one of the most challenging problems in weather forecasting. In order to improve high-resolution quantitative precipitation forecasts (QPF), a new procedure for assimilating rainfall rate derived from radar composite reflectivity has been proposed and tested in a numerical simulation of the Chicago floods of 17–18 July 1996. The methodology is based on the one-dimensional variation scheme (1DVAR) assimilation approach introduced by Fillion and Errico but applied here using the Kain-Fritsch convective parameterization scheme (KF CPS). The novel feature of this work is the continuous assimilation of radar estimated rain rate over a three hour period, rather than a single assimilation at the initial (analysis) time. Most of the characteristics of this precipitation event, including the propagation, regeneration of mesoscale convective systems, the frontal boundary across the Midwest and the evolution of the low-level jet are better captured in the simulation as the radar-estimated precipitation rate is assimilated. The results indicate that precipitation assimilation during the early stage can improve the simulated mesoscale feature of the convection system and shorten the spin-up time significantly. Comparison of precipitation forecasts between the experiments with and without the 1DVAR indicates that the 1DVAR scheme has a positive impact on the QPF up to 36 hours in terms of the bias and bias equalized threat scores.展开更多
基金supported by the Canadian Foundation for Climate and Atmospheric Sciences (CFCAS), and CLUMEQ, which is funded in part by NSERC (MRS), FQRNT, and Mc Gill University
文摘Rainfall prediction remains one of the most challenging problems in weather forecasting. In order to improve high-resolution quantitative precipitation forecasts (QPF), a new procedure for assimilating rainfall rate derived from radar composite reflectivity has been proposed and tested in a numerical simulation of the Chicago floods of 17–18 July 1996. The methodology is based on the one-dimensional variation scheme (1DVAR) assimilation approach introduced by Fillion and Errico but applied here using the Kain-Fritsch convective parameterization scheme (KF CPS). The novel feature of this work is the continuous assimilation of radar estimated rain rate over a three hour period, rather than a single assimilation at the initial (analysis) time. Most of the characteristics of this precipitation event, including the propagation, regeneration of mesoscale convective systems, the frontal boundary across the Midwest and the evolution of the low-level jet are better captured in the simulation as the radar-estimated precipitation rate is assimilated. The results indicate that precipitation assimilation during the early stage can improve the simulated mesoscale feature of the convection system and shorten the spin-up time significantly. Comparison of precipitation forecasts between the experiments with and without the 1DVAR indicates that the 1DVAR scheme has a positive impact on the QPF up to 36 hours in terms of the bias and bias equalized threat scores.