Historically,streamer-to-leader transition studies mainly focused on the rod-plane gap and low altitude analysis,with limited attention paid to the sphere-plane gap at high altitude analysis.In this work,sphere-plane ...Historically,streamer-to-leader transition studies mainly focused on the rod-plane gap and low altitude analysis,with limited attention paid to the sphere-plane gap at high altitude analysis.In this work,sphere-plane gap discharge tests were carried out under the gap distance of 5 m at the Qinghai Ultra High Voltage(UHV)test base at an altitude of 2200 m.The experiments measured the physical parameters such as the discharge current,electric field intensity and instantaneous optical power.The duration of the dark period and the critical charge of streamer-toleader transition were obtained at high altitude.Based on radial thermal expansion of the streamer stem,we established a modified streamer-to-leader transition model of the sphere-plane gap discharge at high altitude,and calculated the stem temperature,stem radii and the duration of streamer-to-leader transition.Compared with the measured duration of sphere-plane electrode discharge at an altitude of 2200 m,the error rate of the modified model was 0.94%,while the classical model was 6.97%,demonstrating the effectiveness of the modified model.From the comparisons and analysis,several suggestions are proposed to improve the numerical model for further quantitative investigations of the leader inception.展开更多
This paper proposes a new type of radial expansion mechanism by adopting the scissor type telescopic design for intestinal robot to meet the requirements of the intestinal robot’s movement and residence in the intest...This paper proposes a new type of radial expansion mechanism by adopting the scissor type telescopic design for intestinal robot to meet the requirements of the intestinal robot’s movement and residence in the intestinal tract.The robot’s maximum expansion radius is up to 25mm,which can well adapt to the intestinal tract with different diameters.At first,the mathematical model of the scissors-type telescopic mechanism(STM)is established to further study its dynamics characteristics by theoretical analysis and simulation.Then,in order to study the coupling effect between the STM and intestinal wall,the strain-energy function of Fung-type is used to establish the constitutive model of intestinal wall.Moreover,aimed at solving the non-convergence problem caused by the selection of material parameters in general Fung-type model,the restrictions for selecting material parameters were given by using positive definite matrix theory.Furthermore,the motion coupling characteristics between the mechanism and intestinal wall were analyzed by using the finite element method.The result shows that if the expansion radius of the STM exceeds a certain value,the intestinal wall may reach its deformation limit,which means that the maximum rotating angle of the three-claw butterfly disc of STM can be decided based on the maximum deformation stress of the intestinal wall.Therefore,it provides a design basis for formulating a reasonable expansion radius in mechanism control to avoid damage to the intestinal wall.展开更多
Two-dimensional diagnosis of laser-induced zirconium(Zr)plasma has been experimentally performed using the time-of-flight method by employing Faraday cups in addition to electric and magnetic probes.The characteristic...Two-dimensional diagnosis of laser-induced zirconium(Zr)plasma has been experimentally performed using the time-of-flight method by employing Faraday cups in addition to electric and magnetic probes.The characteristic parameters of laser-induced Zr plasma have been evaluated as a function of different laser irradiances ranging from 4.5 to 11.7 GW cm-2 at different axial positions of 1–4 cm with a fixed radial distance of 2 cm.A well-supporting correlation between the plume parameters and the laser-plasma-produced spontaneous electric and magnetic(E and B)fields was established.The measurements of the characteristic parameters and spontaneously induced fields were observed to have an increasing trend with the increasing laser irradiance.However,when increasing the spatial distance in both the axial and radial directions,the plasma parameters(electron/ion number density,temperature and kinetic energy)did not show either continuously increasing or decreasing trends due to various kinetic and dynamic processes during the spatial evolution of the plume.However,the E and B fields were observed to be always diffusing away from the target.The radial component of electron number densities remained higher than the axial number density component,whereas the axial ion number density at all laser irradiances and axial distances remained higher than the radial ion number density.The higher axial self-generated electric field(SGEF)values than radial SGEF values are correlated with the effective charge-separation mechanism of electrons and ions.The generation of a self-generated magnetic field is observed dominantly in the radial direction at increasing laser irradiance as compared to the axial one due to the deflection of fast-moving electrons and the persistence of two-electron temperature on the radial axis.展开更多
基金supported by National Natural Science Foundation of China(Scientific Funds for Young Scientists)(No.52007064)。
文摘Historically,streamer-to-leader transition studies mainly focused on the rod-plane gap and low altitude analysis,with limited attention paid to the sphere-plane gap at high altitude analysis.In this work,sphere-plane gap discharge tests were carried out under the gap distance of 5 m at the Qinghai Ultra High Voltage(UHV)test base at an altitude of 2200 m.The experiments measured the physical parameters such as the discharge current,electric field intensity and instantaneous optical power.The duration of the dark period and the critical charge of streamer-toleader transition were obtained at high altitude.Based on radial thermal expansion of the streamer stem,we established a modified streamer-to-leader transition model of the sphere-plane gap discharge at high altitude,and calculated the stem temperature,stem radii and the duration of streamer-to-leader transition.Compared with the measured duration of sphere-plane electrode discharge at an altitude of 2200 m,the error rate of the modified model was 0.94%,while the classical model was 6.97%,demonstrating the effectiveness of the modified model.From the comparisons and analysis,several suggestions are proposed to improve the numerical model for further quantitative investigations of the leader inception.
基金the Research Project of Traditional Chinese Medicine of Shanghai Health Committee(No.2020JP012)the Pujiang Talents’Project of Shanghai(No.20PJ1406600)the National Natural Science Foundation of China(No.61673271)。
文摘This paper proposes a new type of radial expansion mechanism by adopting the scissor type telescopic design for intestinal robot to meet the requirements of the intestinal robot’s movement and residence in the intestinal tract.The robot’s maximum expansion radius is up to 25mm,which can well adapt to the intestinal tract with different diameters.At first,the mathematical model of the scissors-type telescopic mechanism(STM)is established to further study its dynamics characteristics by theoretical analysis and simulation.Then,in order to study the coupling effect between the STM and intestinal wall,the strain-energy function of Fung-type is used to establish the constitutive model of intestinal wall.Moreover,aimed at solving the non-convergence problem caused by the selection of material parameters in general Fung-type model,the restrictions for selecting material parameters were given by using positive definite matrix theory.Furthermore,the motion coupling characteristics between the mechanism and intestinal wall were analyzed by using the finite element method.The result shows that if the expansion radius of the STM exceeds a certain value,the intestinal wall may reach its deformation limit,which means that the maximum rotating angle of the three-claw butterfly disc of STM can be decided based on the maximum deformation stress of the intestinal wall.Therefore,it provides a design basis for formulating a reasonable expansion radius in mechanism control to avoid damage to the intestinal wall.
文摘Two-dimensional diagnosis of laser-induced zirconium(Zr)plasma has been experimentally performed using the time-of-flight method by employing Faraday cups in addition to electric and magnetic probes.The characteristic parameters of laser-induced Zr plasma have been evaluated as a function of different laser irradiances ranging from 4.5 to 11.7 GW cm-2 at different axial positions of 1–4 cm with a fixed radial distance of 2 cm.A well-supporting correlation between the plume parameters and the laser-plasma-produced spontaneous electric and magnetic(E and B)fields was established.The measurements of the characteristic parameters and spontaneously induced fields were observed to have an increasing trend with the increasing laser irradiance.However,when increasing the spatial distance in both the axial and radial directions,the plasma parameters(electron/ion number density,temperature and kinetic energy)did not show either continuously increasing or decreasing trends due to various kinetic and dynamic processes during the spatial evolution of the plume.However,the E and B fields were observed to be always diffusing away from the target.The radial component of electron number densities remained higher than the axial number density component,whereas the axial ion number density at all laser irradiances and axial distances remained higher than the radial ion number density.The higher axial self-generated electric field(SGEF)values than radial SGEF values are correlated with the effective charge-separation mechanism of electrons and ions.The generation of a self-generated magnetic field is observed dominantly in the radial direction at increasing laser irradiance as compared to the axial one due to the deflection of fast-moving electrons and the persistence of two-electron temperature on the radial axis.