This paper describes a Mach/Langmuir probe array with five pins and six pins, which can measure not only parallel flows and the flow perpendicular to the magnetic field but also the radial and the poloidal electric fi...This paper describes a Mach/Langmuir probe array with five pins and six pins, which can measure not only parallel flows and the flow perpendicular to the magnetic field but also the radial and the poloidal electric field E. arid E as well. Experimental measurements of the edge fluctuations, velocities of the toroidal, the poloidal flow and electric field have been carried out on both of SOL and the boundary region of HL-1M for Ohmic, biased H-mode, Lower Hybrid Current Drive (LHCD), Supersonic Molecular Beam Injection (MBI), Multi-shot Pellet Injection (MPI), Neutral Beam Injection (NBI), Ion Cyclotron Resonance Heating (ICRH) and Electric Cyclotron Resonance Heating (ECRH) discharges. The results show that the suppressions of the fluctuations are related to poloidal rotations produced by different discharge modes in the improved particle confinement property, simultaneously the change of the radial and poloidal electric field is generated and becomes more negative at the Tokamak plasma edge, and the sheared poloidal flow is related to the reduction in fluctuation level, and the poloidal velocity is mainly dominated by the E × B drift.展开更多
The tight focusing properties of a radially polarized Gaussian beam with a nested pair of vortices having a radial wave front distribution are investigated theoretically by the vector diffraction theory. The results s...The tight focusing properties of a radially polarized Gaussian beam with a nested pair of vortices having a radial wave front distribution are investigated theoretically by the vector diffraction theory. The results show that the optical intensity in the focal region can be altered considerably by changing the location of the vortices nested in a radially polarized Gaussian beam. It is noted that focal evolution from one annular focal pattern to a highly confined focal spot in the transverse direction is observed corresponding to the change in the location of the optical vortices in the input plane. It is also observed that the generated focal hole or spot lead to a focal shift along the optical axis remarkably under proper radial phase modulation. Hence the proposed system may be applied to construct tunable optical traps for both high and low refractive index particles.展开更多
Helicon discharges have attracted great attention in the electric propulsion community in recent years. To acquire the equilibrium properties, a self-consistent model is developed, which combines the helicon/Trivelpie...Helicon discharges have attracted great attention in the electric propulsion community in recent years. To acquire the equilibrium properties, a self-consistent model is developed, which combines the helicon/Trivelpiece-Gould (TG) waves- plasma interaction mechanism and the plasma flow theory under the confinement of the magnetic field. The calculations reproduce the central peak density phenomenon observed in the experiments. The results show that when operating in the wave coupling mode, high magnetic field strength B0 results in the deviation of the central density versus B0 from the linear relationship, while the density rise becomes flatter as the radiofrequency (rf) input power Prf grows, and the electron temperature Te radial profile is mainly determined by the characteristic of the rf energy deposition. The model could provide suggestions in choosing the B0 and Prf for medium power helicon thrusters.展开更多
We propose a new approach for generating a multiple focal spot segment of subwavelength size, by tight focusing of a phase modulated radially polarized Laguerre Bessel Gaussian beam. The focusing properties are invest...We propose a new approach for generating a multiple focal spot segment of subwavelength size, by tight focusing of a phase modulated radially polarized Laguerre Bessel Gaussian beam. The focusing properties are investigated theoretically by .vector diffraction theory. We observe that the focal segment with multiple focal structures is separated with different axial distances and a super long dark channel can be generated by properly tuning the phase of the incident radially polarized Laguerre Bessel Gaussian beam. We presume that such multiple focal patterns and high intense beam may find applications in atom optics, optical manipulations and multiple optical trapping.展开更多
文摘This paper describes a Mach/Langmuir probe array with five pins and six pins, which can measure not only parallel flows and the flow perpendicular to the magnetic field but also the radial and the poloidal electric field E. arid E as well. Experimental measurements of the edge fluctuations, velocities of the toroidal, the poloidal flow and electric field have been carried out on both of SOL and the boundary region of HL-1M for Ohmic, biased H-mode, Lower Hybrid Current Drive (LHCD), Supersonic Molecular Beam Injection (MBI), Multi-shot Pellet Injection (MPI), Neutral Beam Injection (NBI), Ion Cyclotron Resonance Heating (ICRH) and Electric Cyclotron Resonance Heating (ECRH) discharges. The results show that the suppressions of the fluctuations are related to poloidal rotations produced by different discharge modes in the improved particle confinement property, simultaneously the change of the radial and poloidal electric field is generated and becomes more negative at the Tokamak plasma edge, and the sheared poloidal flow is related to the reduction in fluctuation level, and the poloidal velocity is mainly dominated by the E × B drift.
文摘The tight focusing properties of a radially polarized Gaussian beam with a nested pair of vortices having a radial wave front distribution are investigated theoretically by the vector diffraction theory. The results show that the optical intensity in the focal region can be altered considerably by changing the location of the vortices nested in a radially polarized Gaussian beam. It is noted that focal evolution from one annular focal pattern to a highly confined focal spot in the transverse direction is observed corresponding to the change in the location of the optical vortices in the input plane. It is also observed that the generated focal hole or spot lead to a focal shift along the optical axis remarkably under proper radial phase modulation. Hence the proposed system may be applied to construct tunable optical traps for both high and low refractive index particles.
基金Project supported by the National Natural Science Foundation of China(Grant No.11305265)
文摘Helicon discharges have attracted great attention in the electric propulsion community in recent years. To acquire the equilibrium properties, a self-consistent model is developed, which combines the helicon/Trivelpiece-Gould (TG) waves- plasma interaction mechanism and the plasma flow theory under the confinement of the magnetic field. The calculations reproduce the central peak density phenomenon observed in the experiments. The results show that when operating in the wave coupling mode, high magnetic field strength B0 results in the deviation of the central density versus B0 from the linear relationship, while the density rise becomes flatter as the radiofrequency (rf) input power Prf grows, and the electron temperature Te radial profile is mainly determined by the characteristic of the rf energy deposition. The model could provide suggestions in choosing the B0 and Prf for medium power helicon thrusters.
文摘We propose a new approach for generating a multiple focal spot segment of subwavelength size, by tight focusing of a phase modulated radially polarized Laguerre Bessel Gaussian beam. The focusing properties are investigated theoretically by .vector diffraction theory. We observe that the focal segment with multiple focal structures is separated with different axial distances and a super long dark channel can be generated by properly tuning the phase of the incident radially polarized Laguerre Bessel Gaussian beam. We presume that such multiple focal patterns and high intense beam may find applications in atom optics, optical manipulations and multiple optical trapping.