In order to improve the heat transfer characteristics of the traditional phase change material(PCM) floor, a new double-layer radiant floor system with PCM is proposed, which can store thermal or cold energy in the ...In order to improve the heat transfer characteristics of the traditional phase change material(PCM) floor, a new double-layer radiant floor system with PCM is proposed, which can store thermal or cold energy in the off-peak period and use them in the peak period. An experimental setup was developed to study the heat transfer characteristics of the new system under both cooling and heating modes. The experimental results show that the double-layer radiant floor system with PCM can meet both the cold and thermal requirements of users. Moreover, with the same duration of the thermal energy storage process, the increase of water temperature supplied to the system can improve the heat transfer characteristics of the system but lead to the discomfort of users. On the other hand, if the air temperature at the end of the thermal energy storage process is the same under different conditions, the increase of supplied water temperature will decrease the thermal energy storage time and ensure the comfort of users.展开更多
To evaluate the thermal performance of a low-temperature electrical radiant floor heating system,an experimental facility equipped with a constant temperature chamber and different specimen floors is designed and buil...To evaluate the thermal performance of a low-temperature electrical radiant floor heating system,an experimental facility equipped with a constant temperature chamber and different specimen floors is designed and built.The heating cable is installed in the floor slab with a unit-rated power of 30 W/m.Twenty-four different schemes are worked out and tested,which include three kinds of composite floor structures and eight kinds of cable distances.The cable distances are 30,40,50,60,80,100,130,150 mm.The main affective factors of the thermal performance and their influencing regularity are discussed.The experimental results show that the system has good stability and reliability,and the ratio of the radiation heat-transfer rate to the gross heat-transfer rate is greater than 50%.When the floor structure and the cable distance are fixed,the gross heat-transfer rate of the upper floor surface has a maximum value at an optimal cable distance.Under the experimental conditions in this paper,the optimal cable distance is 50 mm.展开更多
A radiant floor cooling system(RFCS)is a high-comfort and low energy consumption system suitable for residential buildings.Radiant floor systems usually work with fresh air,and their operating performance is affected ...A radiant floor cooling system(RFCS)is a high-comfort and low energy consumption system suitable for residential buildings.Radiant floor systems usually work with fresh air,and their operating performance is affected by climatic conditions.Indoor and outdoor environmental disturbances and the system’s control strategy affect the indoor thermal comfort and energy efficiency of the system.Firstly,a multi-story residential building model was established in this study.Transient system simulation program was used to study the operation dynamics of three control strategies of the RFCS based on the calibrated model.Then,the performance of the control strategies in five climate zones in China were compared using multi-criteria decision-making in combination.The results show that control strategy has a negligible effect on condensation risk,but the thermal comfort and economic performance differ for different control strategies.The adaptability of different control strategies varies in different climate zones based on the consideration of multiple factors.The performance of the direct-ground cooling source system is better in Hot summer and warm winter zone.The variable air volume control strategy scores higher in Serve cold and Temperate zones,and the hours exceeding thermal comfort account for less than 3%of the total simulation period.Therefore,it is suggested to choose the RFCS control strategy for residential buildings according to the climate zone characteristics,to increase the energy savings.Our results provide a reliable reference for implementing RFCSs in residential buildings.展开更多
Pre-dehumidification time(τ_(pre))and pre-dehumidification energy consumption(E_(pre))play important roles in preventing the condensation of moisture on the floors of rooms that use a radiant floor cooling(RFC)system...Pre-dehumidification time(τ_(pre))and pre-dehumidification energy consumption(E_(pre))play important roles in preventing the condensation of moisture on the floors of rooms that use a radiant floor cooling(RFC)system.However,there are few theoretical or experimental studies that focus on these two important quantities.In this study,an artificial neural network(ANN)was used to predict condensation risk for the integration of RFC systems with mixed ventilation(MV),stratum ventilation(SV),and displacement ventilation(DV)systems.A genetic algorithm-back-propagation(GA-BP)neural network model was established to predict τ_(pre) and E_(pre).Both training data and validation data were obtained from tests in a computational fluid dynamics(CFD)simulation.The results show that the established GA-BP model can predict τ_(pre) and E_(pre) well.The coefficient of determination(R^(2))of τ_(pre) and of E_(pre) were,respectively,0.973 and 0.956.For an RFC system integrated with an MV,SV,or DV system,the lowest values of τ_(pre) and E_(pre) were with the DV system,23.1 s and 0.237 kWh,respectively,for a 67.5 m^(3) room.Therefore,the best pre-dehumidification effect was with integration of the DV and RFC systems.This study showed that an ANN-based method can be used for predictive control for condensation prevention in RFC systems.It also provides a novel and effective method by which to assess the pre-dehumidification control of radiant floor surfaces.展开更多
In the building with many transparent envelopes,solar radiation can irradiate on the local surface of floor and cause overheating.The local thermal comfort in the room will be dissatisfactory and the thermal performan...In the building with many transparent envelopes,solar radiation can irradiate on the local surface of floor and cause overheating.The local thermal comfort in the room will be dissatisfactory and the thermal performance of radiant floor will be strongly affected.However,in many current calculation models,solar radiation on the floor surface is assumed to be uniformly distributed,resulting in the inaccurate evaluation of the thermal performance of the radiant floor.In this paper,a calculation model based on the theory of discretization and the RC thermal network is proposed to calculate the dynamic thermal performance of radiant floor with the consideration of unevenly distributed solar radiation.Then,the discretization model is experimentally validated and is used to simulate a radiant floor heating system of an office room in Lhasa.It is found that with the unevenly distributed solar radiation,the maximum surface temperature near the south exterior window can reach up to 35.6℃,which exceeds the comfort temperature limit and is nearly 8.5℃higher than that in the north zone.Meanwhile,the heating capacity of the radiant floor in the irradiated zone can reach up to 171 W/m^(2),while that in the shaded zone is only 79 W/m^(2).The model with the assumption of uniformly distributed solar radiation ignores the differences between the south and north zones and fails to describe local overheating in the irradiated zones.By contrast,the discretization model can more accurately evaluate the thermal performance of radiant floor with the influence of real solar radiation.Based on this discretization model,novel design and control schemes of radiant floor heating system can be proposed to alleviate local overheating and reduce heating capacity in the irradiated zone.展开更多
Due to the wide application of floor heating systems, the radiant floor cooling systems has developed rapidly in recent years. In this paper, TRNSYS numerical simulation methods are used to study the influence of chil...Due to the wide application of floor heating systems, the radiant floor cooling systems has developed rapidly in recent years. In this paper, TRNSYS numerical simulation methods are used to study the influence of chilled water supply temperature and flow rate on the cold storage characteristics of a standard floor structure for office buildings in northern China. The results are verified by experimental measurements. The functional relationship between the saturated cold storage time and the chilled water flow rate is quadratic polynomial, while the changes of supply-water temperature have no effect on the saturation time;the supply-water temperature has a linear relationship with the saturated cold storage volume, while the chilled water flow rate has almost no effect on the saturation cold storage volume. The accumulated cold volume of floor changes with time in an exponential distribution with four coefficients, and the floor has the characteristics of rapid cold storage. This paper is instructive for the design, application and promotion of radiant floor cooling systems.展开更多
基金The National Science and Technology Pillar Program during the 12th Five-Year Plan Period(No.2011BAJ03B14)the National Natural Science Foundation of China(No.51376044)
文摘In order to improve the heat transfer characteristics of the traditional phase change material(PCM) floor, a new double-layer radiant floor system with PCM is proposed, which can store thermal or cold energy in the off-peak period and use them in the peak period. An experimental setup was developed to study the heat transfer characteristics of the new system under both cooling and heating modes. The experimental results show that the double-layer radiant floor system with PCM can meet both the cold and thermal requirements of users. Moreover, with the same duration of the thermal energy storage process, the increase of water temperature supplied to the system can improve the heat transfer characteristics of the system but lead to the discomfort of users. On the other hand, if the air temperature at the end of the thermal energy storage process is the same under different conditions, the increase of supplied water temperature will decrease the thermal energy storage time and ensure the comfort of users.
文摘To evaluate the thermal performance of a low-temperature electrical radiant floor heating system,an experimental facility equipped with a constant temperature chamber and different specimen floors is designed and built.The heating cable is installed in the floor slab with a unit-rated power of 30 W/m.Twenty-four different schemes are worked out and tested,which include three kinds of composite floor structures and eight kinds of cable distances.The cable distances are 30,40,50,60,80,100,130,150 mm.The main affective factors of the thermal performance and their influencing regularity are discussed.The experimental results show that the system has good stability and reliability,and the ratio of the radiation heat-transfer rate to the gross heat-transfer rate is greater than 50%.When the floor structure and the cable distance are fixed,the gross heat-transfer rate of the upper floor surface has a maximum value at an optimal cable distance.Under the experimental conditions in this paper,the optimal cable distance is 50 mm.
基金This work was funded by the Natural Science Foundation of Shandong Province(ZR2021ME199,ZR2021ME237)the Support Plan for Outstanding Youth Innovation Team in Colleges and Universities of Shandong Province(2019KJG005).This work was also supported by the Plan of Introduction and Cultivation for Young Innovative Talents in Colleges and Universities of Shandong Province,and Funding for Domestic Visiting Scholars at Shandong Jianzhu University.
文摘A radiant floor cooling system(RFCS)is a high-comfort and low energy consumption system suitable for residential buildings.Radiant floor systems usually work with fresh air,and their operating performance is affected by climatic conditions.Indoor and outdoor environmental disturbances and the system’s control strategy affect the indoor thermal comfort and energy efficiency of the system.Firstly,a multi-story residential building model was established in this study.Transient system simulation program was used to study the operation dynamics of three control strategies of the RFCS based on the calibrated model.Then,the performance of the control strategies in five climate zones in China were compared using multi-criteria decision-making in combination.The results show that control strategy has a negligible effect on condensation risk,but the thermal comfort and economic performance differ for different control strategies.The adaptability of different control strategies varies in different climate zones based on the consideration of multiple factors.The performance of the direct-ground cooling source system is better in Hot summer and warm winter zone.The variable air volume control strategy scores higher in Serve cold and Temperate zones,and the hours exceeding thermal comfort account for less than 3%of the total simulation period.Therefore,it is suggested to choose the RFCS control strategy for residential buildings according to the climate zone characteristics,to increase the energy savings.Our results provide a reliable reference for implementing RFCSs in residential buildings.
基金funded by the Natural Science Foundation of Shan-dong Province(ZR2021ME199,ZR2020ME211)the Support Plan for Outstanding Youth Innovation Team in Colleges and Universities of Shandong Province(2019KJG005)supported by the Plan of Introduction and Cultivation for Young Innovative Talents in Colleges and Universities of Shandong Province.
文摘Pre-dehumidification time(τ_(pre))and pre-dehumidification energy consumption(E_(pre))play important roles in preventing the condensation of moisture on the floors of rooms that use a radiant floor cooling(RFC)system.However,there are few theoretical or experimental studies that focus on these two important quantities.In this study,an artificial neural network(ANN)was used to predict condensation risk for the integration of RFC systems with mixed ventilation(MV),stratum ventilation(SV),and displacement ventilation(DV)systems.A genetic algorithm-back-propagation(GA-BP)neural network model was established to predict τ_(pre) and E_(pre).Both training data and validation data were obtained from tests in a computational fluid dynamics(CFD)simulation.The results show that the established GA-BP model can predict τ_(pre) and E_(pre) well.The coefficient of determination(R^(2))of τ_(pre) and of E_(pre) were,respectively,0.973 and 0.956.For an RFC system integrated with an MV,SV,or DV system,the lowest values of τ_(pre) and E_(pre) were with the DV system,23.1 s and 0.237 kWh,respectively,for a 67.5 m^(3) room.Therefore,the best pre-dehumidification effect was with integration of the DV and RFC systems.This study showed that an ANN-based method can be used for predictive control for condensation prevention in RFC systems.It also provides a novel and effective method by which to assess the pre-dehumidification control of radiant floor surfaces.
基金This research work was financially supported by the Natural Science Foundation of Sichuan Province(No.2022NSFSC1944)the National Natural Science Foundation of China(No.51708453).
文摘In the building with many transparent envelopes,solar radiation can irradiate on the local surface of floor and cause overheating.The local thermal comfort in the room will be dissatisfactory and the thermal performance of radiant floor will be strongly affected.However,in many current calculation models,solar radiation on the floor surface is assumed to be uniformly distributed,resulting in the inaccurate evaluation of the thermal performance of the radiant floor.In this paper,a calculation model based on the theory of discretization and the RC thermal network is proposed to calculate the dynamic thermal performance of radiant floor with the consideration of unevenly distributed solar radiation.Then,the discretization model is experimentally validated and is used to simulate a radiant floor heating system of an office room in Lhasa.It is found that with the unevenly distributed solar radiation,the maximum surface temperature near the south exterior window can reach up to 35.6℃,which exceeds the comfort temperature limit and is nearly 8.5℃higher than that in the north zone.Meanwhile,the heating capacity of the radiant floor in the irradiated zone can reach up to 171 W/m^(2),while that in the shaded zone is only 79 W/m^(2).The model with the assumption of uniformly distributed solar radiation ignores the differences between the south and north zones and fails to describe local overheating in the irradiated zones.By contrast,the discretization model can more accurately evaluate the thermal performance of radiant floor with the influence of real solar radiation.Based on this discretization model,novel design and control schemes of radiant floor heating system can be proposed to alleviate local overheating and reduce heating capacity in the irradiated zone.
基金financially supported by the Plan of Guidance and Cultivation for Young Innovative Talents of Shandong Provincial Colleges and Universitiesfinancially supported by the National Natural Science Foundation of China(Grant No.51808321)。
文摘Due to the wide application of floor heating systems, the radiant floor cooling systems has developed rapidly in recent years. In this paper, TRNSYS numerical simulation methods are used to study the influence of chilled water supply temperature and flow rate on the cold storage characteristics of a standard floor structure for office buildings in northern China. The results are verified by experimental measurements. The functional relationship between the saturated cold storage time and the chilled water flow rate is quadratic polynomial, while the changes of supply-water temperature have no effect on the saturation time;the supply-water temperature has a linear relationship with the saturated cold storage volume, while the chilled water flow rate has almost no effect on the saturation cold storage volume. The accumulated cold volume of floor changes with time in an exponential distribution with four coefficients, and the floor has the characteristics of rapid cold storage. This paper is instructive for the design, application and promotion of radiant floor cooling systems.