The radiation environment on the surface of Mars is a potential threat for future manned exploration missions to this planet.In this study,a simple geometrical model was built for simulating the radiation environment ...The radiation environment on the surface of Mars is a potential threat for future manned exploration missions to this planet.In this study,a simple geometrical model was built for simulating the radiation environment on the Mars surface caused by galactic cosmic rays;the model was built and studied using the Geant4 toolkit.The simulation results were compared with the data reported by a radiation assessment detector(RAD).The simulated spectra of neutrons,photons,protons,α particles,and particle groups Z=3-5,Z=6-8,Z=9-13,and Z=14-24 were in a reasonable agreement with the RAD data.However,for deuterons,tritons,and 3He,the simulations yielded much smaller values than for the corresponding RAD data.In addition,the particles’spectra within the 90 zenith angle were also obtained.Based on these spectra,we calculated the radiation dose that would have been received by an average human body on Mars.The distribution of the dose throughout the human body was not uniform.The absorbed and equivalent doses for the brain were the highest among all of the organs,reaching 62.0±1.7 mGy/y and 234.1±8.0 mSv/y,respectively.The average absorbed and equivalent doses for the entire body were approximately 44 mGy/y and 153 mSv/y,respectively.Further analysis revealed that most of the radiation dose was owing to a particles,protons,and heavy ions.We then studied the shielding effect of the Mars soil with respect to the radiation.The body dose decreased significantly with increasing soil depth.At the depth of 1.5 m,the effective dose for the entire body was 17.9±2.4 mSv/y,lower than the dose limit for occupational exposure.At the depth of 3 m,the effective dose to the body was 2.7±1.0 mSv/y,still higher than the accepted dose limit.展开更多
Utilizing commercial off-the-shelf(COTS) components in satellites has received much attention due to the low cost. However, commercial memories suffer severe reliability problems in radiation environments. This paper ...Utilizing commercial off-the-shelf(COTS) components in satellites has received much attention due to the low cost. However, commercial memories suffer severe reliability problems in radiation environments. This paper studies the low-density parity-check(LDPC) coding scheme for improving the reliability of multi-level-cell(MLC) NAND Flash memory in radiation environments. Firstly, based on existing physical experiment works, we introduce a new error model for heavyion irradiations; secondly, we explore the optimization of writing voltage allocation to maximize the capacity of the storage channel; thirdly, we design the degree distribution of LDPC codes that is specially suitable for the proposed model; finally, we propose a joint detection-decoding scheme based on LDPC codes, which estimates the storage channel state and executes an adaptive log-likelihood ratio(LLR) calculation to achieve better performance. Simulation results show that, compared with the conventional LDPC coding scheme, the proposed scheme may almost double the lifetime of the MLC NAND Flash memory in radiation environments.展开更多
The KCI:Eu2+ system response to UV-C was investigated by analyzing the optically stimulated luminescence (OSL) and ther- mo-luminescence (TL) signal produced by ultraviolet light exposure at room temperature. It...The KCI:Eu2+ system response to UV-C was investigated by analyzing the optically stimulated luminescence (OSL) and ther- mo-luminescence (TL) signal produced by ultraviolet light exposure at room temperature. It was found that after UV-C irra.diation, OSL was produced on a wide band of visible wavelengths with decay time that varied by several orders of magnitude depending on the Eu2+ aggregation state. In spite of the low intensity of solar UV-C reaching the Earth's surface in Madrid (40° N, 700 m a.s.1.), it was possible to measure the UV-C radiation dose at 6:48 solar time by using the TL response of the KCI:Eu2+ system and differentiate it from the ambient beta radiation dose.展开更多
An imported energy spectrum analyzer is powerful, but English operation interface is not easy to use. According to actual work needs, preliminary design of the Chinese energy spectrum analysis system is introduced in ...An imported energy spectrum analyzer is powerful, but English operation interface is not easy to use. According to actual work needs, preliminary design of the Chinese energy spectrum analysis system is introduced in the paper.展开更多
The WRNM(wide range neutron monitoring)is a newly developed neutron monitoring channel which was initially conceived as a means to meet Regulatory Guide 1.97 requirements for post-accident neutron monitoring.The scope...The WRNM(wide range neutron monitoring)is a newly developed neutron monitoring channel which was initially conceived as a means to meet Regulatory Guide 1.97 requirements for post-accident neutron monitoring.The scope was expanded to include the startup monitoring function with the aim of replacing both the source and IRMs(intermediate range monitors)in BWRs(boiling water reactors).The WRNMs,consisting of a newly designed fixed incore regenerative sensor and new electronics,which include both counting and MSV(mean square voltage)channels,have been tested in several reactors and its capabilities have been confirmed.The channel will cover the neutron flux range from 103 nv to 1.5×103 nv;it has greater than 1 decade overlap between the counting and MSV channels.Because of the regenerative fissile coating the sensor,even though fixed incore,has a life of approximately 6.0 full power years in a 51 kW/L BWR and similar situation has been proposed for newly designed small modular reactor such as BWRX-300 of General Electric Hitachi reactor.展开更多
Missions flying to giant planets frequently provide telemetry data after substantial time lag. Determination of crucial environmental characteristic sometimes detrimental for the mission health may be further delayed ...Missions flying to giant planets frequently provide telemetry data after substantial time lag. Determination of crucial environmental characteristic sometimes detrimental for the mission health may be further delayed by duration of subsequent data analysis. We propose a fast method used in-flight to assess the electron total ionizing dose and dose rate onboard of the JUICE ESA mission to JUPITER. The procedure provides estimated values of dose rate behind various thickness of shielding using counting rates from the electron telescope EHD of the RADEM radiation hard electron monitor instrument onboard JUICE.展开更多
基金supported by the National Natural Science Foundation of China(Nos.12035011,11535004,11905103,11947211,11975167,11761161001,11565010,11961141003,11805103,11673075,11303107,11120101005,and 11235001)the National Key R&D Program of China(Nos.2018YFA0404403 and 2016YFE0129300)+2 种基金the Science and Technology Development Fund of Macao(No.008/2017/AFJ)the Fundamental Research Funds for the Central Universities(Nos.22120210138 and 22120200101)by the China Post-doctoral Science Foundation(Nos.2019M660095 and 2020T130478)。
文摘The radiation environment on the surface of Mars is a potential threat for future manned exploration missions to this planet.In this study,a simple geometrical model was built for simulating the radiation environment on the Mars surface caused by galactic cosmic rays;the model was built and studied using the Geant4 toolkit.The simulation results were compared with the data reported by a radiation assessment detector(RAD).The simulated spectra of neutrons,photons,protons,α particles,and particle groups Z=3-5,Z=6-8,Z=9-13,and Z=14-24 were in a reasonable agreement with the RAD data.However,for deuterons,tritons,and 3He,the simulations yielded much smaller values than for the corresponding RAD data.In addition,the particles’spectra within the 90 zenith angle were also obtained.Based on these spectra,we calculated the radiation dose that would have been received by an average human body on Mars.The distribution of the dose throughout the human body was not uniform.The absorbed and equivalent doses for the brain were the highest among all of the organs,reaching 62.0±1.7 mGy/y and 234.1±8.0 mSv/y,respectively.The average absorbed and equivalent doses for the entire body were approximately 44 mGy/y and 153 mSv/y,respectively.Further analysis revealed that most of the radiation dose was owing to a particles,protons,and heavy ions.We then studied the shielding effect of the Mars soil with respect to the radiation.The body dose decreased significantly with increasing soil depth.At the depth of 1.5 m,the effective dose for the entire body was 17.9±2.4 mSv/y,lower than the dose limit for occupational exposure.At the depth of 3 m,the effective dose to the body was 2.7±1.0 mSv/y,still higher than the accepted dose limit.
基金supported by the National Basic Research Project of China(973)(2013CB329006)National Natural Science Foundation of China(NSFC,91538203)the new strategic industries development projects of Shenzhen City(JCYJ20150403155812833)
文摘Utilizing commercial off-the-shelf(COTS) components in satellites has received much attention due to the low cost. However, commercial memories suffer severe reliability problems in radiation environments. This paper studies the low-density parity-check(LDPC) coding scheme for improving the reliability of multi-level-cell(MLC) NAND Flash memory in radiation environments. Firstly, based on existing physical experiment works, we introduce a new error model for heavyion irradiations; secondly, we explore the optimization of writing voltage allocation to maximize the capacity of the storage channel; thirdly, we design the degree distribution of LDPC codes that is specially suitable for the proposed model; finally, we propose a joint detection-decoding scheme based on LDPC codes, which estimates the storage channel state and executes an adaptive log-likelihood ratio(LLR) calculation to achieve better performance. Simulation results show that, compared with the conventional LDPC coding scheme, the proposed scheme may almost double the lifetime of the MLC NAND Flash memory in radiation environments.
文摘The KCI:Eu2+ system response to UV-C was investigated by analyzing the optically stimulated luminescence (OSL) and ther- mo-luminescence (TL) signal produced by ultraviolet light exposure at room temperature. It was found that after UV-C irra.diation, OSL was produced on a wide band of visible wavelengths with decay time that varied by several orders of magnitude depending on the Eu2+ aggregation state. In spite of the low intensity of solar UV-C reaching the Earth's surface in Madrid (40° N, 700 m a.s.1.), it was possible to measure the UV-C radiation dose at 6:48 solar time by using the TL response of the KCI:Eu2+ system and differentiate it from the ambient beta radiation dose.
文摘An imported energy spectrum analyzer is powerful, but English operation interface is not easy to use. According to actual work needs, preliminary design of the Chinese energy spectrum analysis system is introduced in the paper.
文摘The WRNM(wide range neutron monitoring)is a newly developed neutron monitoring channel which was initially conceived as a means to meet Regulatory Guide 1.97 requirements for post-accident neutron monitoring.The scope was expanded to include the startup monitoring function with the aim of replacing both the source and IRMs(intermediate range monitors)in BWRs(boiling water reactors).The WRNMs,consisting of a newly designed fixed incore regenerative sensor and new electronics,which include both counting and MSV(mean square voltage)channels,have been tested in several reactors and its capabilities have been confirmed.The channel will cover the neutron flux range from 103 nv to 1.5×103 nv;it has greater than 1 decade overlap between the counting and MSV channels.Because of the regenerative fissile coating the sensor,even though fixed incore,has a life of approximately 6.0 full power years in a 51 kW/L BWR and similar situation has been proposed for newly designed small modular reactor such as BWRX-300 of General Electric Hitachi reactor.
文摘Missions flying to giant planets frequently provide telemetry data after substantial time lag. Determination of crucial environmental characteristic sometimes detrimental for the mission health may be further delayed by duration of subsequent data analysis. We propose a fast method used in-flight to assess the electron total ionizing dose and dose rate onboard of the JUICE ESA mission to JUPITER. The procedure provides estimated values of dose rate behind various thickness of shielding using counting rates from the electron telescope EHD of the RADEM radiation hard electron monitor instrument onboard JUICE.