期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
A novel radiation hardened by design latch 被引量:3
1
作者 黄正峰 梁华国 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2009年第3期118-121,共4页
Due to aggressive technology scaling, radiation-induced soft errors have become a serious reliability concern in VLSI chip design. This paper presents a novel radiation hardened by design latch with high single-eventu... Due to aggressive technology scaling, radiation-induced soft errors have become a serious reliability concern in VLSI chip design. This paper presents a novel radiation hardened by design latch with high single-eventupset (SEU) immunity. The proposed latch can effectively mitigate SEU by internal dual interlocked scheme. The propagation delay, power dissipation and power delay product of the presented latch are evaluated by detailed SPICE simulations. Compared with previous SEU-hardening solutions such as TMR-Latch, the presented latch is more area efficient, delay and power efficient. Fault injection simulations also demonstrate the robustness of the presented latch even under high energy particle strikes. 展开更多
关键词 soft error single event upset radiation hardened by design latch
原文传递
A dual redundancy radiation-hardened flip–flop based on a C-element in a 65 nm process
2
作者 陈刚 高博 龚敏 《Journal of Semiconductors》 EI CAS CSCD 2013年第9期160-163,共4页
A radiation-hardened flip-flop is proposed to mitigate the single event upset (SEU) effect. Immunity was achieved through the use of C-elements and redundant storage elements. It takes advantage of the property of a... A radiation-hardened flip-flop is proposed to mitigate the single event upset (SEU) effect. Immunity was achieved through the use of C-elements and redundant storage elements. It takes advantage of the property of a C-element in which it enters a high impedance mode when its inputs are of different logic values. Redundant storage nodes are then used to drive the C-elements so that a single upset pulse in any storage will be prevented from altering the state of the output of the flip-flop. The flip-flop was implemented using 48 transistors and occupied an area of 30.78 μm2, using 65 nm CMOS process. It consumed 22.6% fewer transistors as compared to the traditional SEU resilient TMR flip-flop. 展开更多
关键词 single event effect radiation hardening by design triple modular redundancy flip-flop C-element
原文传递
Mechanism of single-event transient pulse quenching between dummy gate isolated logic nodes
3
作者 陈建军 池雅庆 梁斌 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第1期404-410,共7页
As integrated circuits scale down in size, a single high-energy ion strike often affects multiple adjacent logic nodes.The so-called single-event transient(SET) pulse quenching induced by single-event charge sharing... As integrated circuits scale down in size, a single high-energy ion strike often affects multiple adjacent logic nodes.The so-called single-event transient(SET) pulse quenching induced by single-event charge sharing collection has been widely studied. In this paper, SET pulse quenching enhancement is found in dummy gate isolated adjacent logic nodes compared with that isolated by the common shallow trench isolation(STI). The physical mechanism is studied in depth and this isolation technique is explored for SET mitigation in combinational standard cells. Three-dimensional(3D) technology computer-aided design simulation(TCAD) results show that this technique can achieve efficient SET mitigation. 展开更多
关键词 single-event transients(SETs) dummy gate isolation SET pulse quenching radiation hardened by design(RHBD)
下载PDF
The dual role of multiple-transistor charge sharing collection in single-event transients
4
作者 郭阳 陈建军 +2 位作者 何益百 梁斌 刘必慰 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第4期360-364,共5页
As technologies scale down in size, multiple-transistors being affected by a single ion has become a universal phenomenon, and some new effects are present in single event transients (SETs) due to the charge sharing... As technologies scale down in size, multiple-transistors being affected by a single ion has become a universal phenomenon, and some new effects are present in single event transients (SETs) due to the charge sharing collection of the adjacent multiple-transistors. In this paper, not only the off-state p-channel metal–oxide semiconductor field-effect transistor (PMOS FET), but also the on-state PMOS is struck by a heavy-ion in the two-transistor inverter chain, due to the charge sharing collection and the electrical interaction. The SET induced by striking the off-state PMOS is efficiently mitigated by the pulse quenching effect, but the SET induced by striking the on-state PMOS becomes dominant. It is indicated in this study that in the advanced technologies, the SET will no longer just be induced by an ion striking the off-state transistor, and the SET sensitive region will no longer just surround the off-state transistor either, as it is in the older technologies. We also discuss this issue in a three-transistor inverter in depth, and the study illustrates that the three-transistor inverter is still a better replacement for spaceborne integrated circuit design in advanced technologies. 展开更多
关键词 multiple-transistor charge sharing collection single event transient (SET) pulse quenching effect radiation hardened by design (RHBD)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部