期刊文献+
共找到4,548篇文章
< 1 2 228 >
每页显示 20 50 100
Cell-type continuous electromagnetic radiation system generating millimeter waves for active denial system applications 被引量:1
1
作者 Sun-Hong Min Ohjoon Kwon +17 位作者 Matlabjon Sattorov Seontae Kim In-Keun Baek Seunghyuk Park Ranjan Kumar Barik Anirban Bera Dongpyo Hong Seonmyeong Kim Bong Hwan Hong Chawon Park Sukhwal Ma Minho Kim Kyo Chul Lee Yong Jin Lee Han Byul Kwon Young Joon Yoo Sang Yoon Park Gun-Sik Park 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第10期1895-1913,共19页
The cell-type continuous electromagnetic radiation system is a demonstration device capable of generating high-power millimeter electromagnetic waves of a specific wavelength and observing their effects on living orga... The cell-type continuous electromagnetic radiation system is a demonstration device capable of generating high-power millimeter electromagnetic waves of a specific wavelength and observing their effects on living organisms.It irradiates a biological sample placed in a 30×30×50 cm^(3)cell with electromagnetic waves in the 3.15-mm-wavelength region(with an output of≥1 W)and analyzes the temperature change of the sample.A vacuum electronic device-based coupled-cavity backward-wave oscillator converts the electron energy of the electron beam into radiofrequency(RF)energy and radiates it to the target through an antenna,increasing the temperature through the absorption of RF energy in the skin.The system causes pain and ultimately reduces combat power.A cell-type continuous electromagnetic radiation system consisting of four parts—an electromagnetic-wave generator,a highvoltage power supply,a test cell,and a system controller—generates an RF signal of≥1 W in a continuous waveform at a 95-GHz center frequency,as well as a chemical solution with a dielectric constant similar to that of the skin of a living organism.An increase of 5°C lasting approximately 10 s was confirmed through an experiment. 展开更多
关键词 Millimeter waves Terahertz waves Coupled-cavity backward wave oscillator(CCBWO) Cell-type continuous electromagnetic radiation Active denial system(ADS) Directed-energy weapon(DEW)
下载PDF
Simulation of the Ecosystem Productivity Responses to Aerosol Diffuse Radiation Fertilization Effects over the Pan-Arctic during 2001–19 被引量:1
2
作者 Zhiding ZHANG Xu YUE +3 位作者 Hao ZHOU Jun ZHU Yadong LEI Chenguang TIAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第1期84-96,共13页
The pan-Arctic is confronted with air pollution transported from lower latitudes.Observations have shown that aerosols help increase plant photosynthesis through the diffuse radiation fertilization effects(DRFEs).Whil... The pan-Arctic is confronted with air pollution transported from lower latitudes.Observations have shown that aerosols help increase plant photosynthesis through the diffuse radiation fertilization effects(DRFEs).While such DRFEs have been explored at low to middle latitudes,the aerosol impacts on pan-Arctic ecosystems and the contributions by anthropogenic and natural emission sources remain less quantified.Here,we perform regional simulations at 0.2o×0.2ousing a well-validated vegetation model(Yale Interactive terrestrial Biosphere,YIBs)in combination with multi-source of observations to quantify the impacts of aerosol DRFEs on the net primary productivity(NPP)in the pan-Arctic during 2001-19.Results show that aerosol DRFEs increase pan-Arctic NPP by 2.19 Pg C(12.8%)yr^(-1)under clear-sky conditions,in which natural and anthropogenic sources contribute to 8.9% and 3.9%,respectively.Under all-sky conditions,such DRFEs are largely dampened by cloud to only 0.26 Pg C(1.24%)yr^(-1),with contributions of 0.65% by natural and 0.59% by anthropogenic species.Natural aerosols cause a positive NPP trend of 0.022% yr^(-1)following the increased fire activities in the pan-Arctic.In contrast,anthropogenic aerosols induce a negative trend of-0.01% yr^(-1)due to reduced emissions from the middle latitudes.Such trends in aerosol DRFEs show a turning point in the year of 2007 with more positive NPP trends by natural aerosols but negative NPP trends by anthropogenic aerosols thereafter.Though affected by modeling uncertainties,this study suggests a likely increasing impact of aerosols on terrestrial ecosystems in the pan-Arctic under global warming. 展开更多
关键词 diffuse radiation fertilization effects anthropogenic aerosols natural aerosols pan-Arctic net primary productivity
下载PDF
Theoretical and Experimental Quantification of Solar Radiation through a Tracking System
3
作者 Guy Christian Tubreoumya Eloi Salmwendé Tiendrebeogo +5 位作者 Tchardja Combary Téré Dabilgou Jacques Nebié Boubou Bagré Alfa Oumar Dissa Antoine Bere 《Open Journal of Applied Sciences》 2024年第9期2648-2660,共13页
This work deals with the estimation of solar radiation through a solar tracker aimed at evaluating the effect of solar tracking on the solar deposit in Burkina Faso. Using a two-axis solar tracking system, we experime... This work deals with the estimation of solar radiation through a solar tracker aimed at evaluating the effect of solar tracking on the solar deposit in Burkina Faso. Using a two-axis solar tracking system, we experimentally measured solar radiation at our Joseph KI-ZERBO University site and compared it with that obtained by a numerical simulation run using Fortran programming software based on a mathematical model by Brichambaut. The results obtained from the mathematical and experimental studies show that, with a solar tracker, on a clear-sky day, solar irradiation is between 800 W·m−2 and 1000 W·m−2 between about 8 a.m. and 4 p.m., i.e. a duration of 8 hours of insolation. Analysis of the numerical and experimental results shows very good quantitative and qualitative agreement, with an average relative error of 18%. 展开更多
关键词 Tracking system Solar radiation Dual Axis Energy Efficiency
下载PDF
The role of crm-1 in ionizing radiation-induced nervous system dysfunction in Caenorhabditis elegans 被引量:1
4
作者 Hui-Qiang Long Jin Gao +3 位作者 Shu-Qing He Jian-Fang Han Yu Tu Na Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第6期1386-1392,共7页
Ionizing radiation can cause changes in nervous system function.However,the underlying mechanism remains unclear.In this study,Coenorhabditis elegans(C.elegans)was irradiated with 75 Gy of ^(60)Co whole-body γ radiat... Ionizing radiation can cause changes in nervous system function.However,the underlying mechanism remains unclear.In this study,Coenorhabditis elegans(C.elegans)was irradiated with 75 Gy of ^(60)Co whole-body γ radiation.Behavioral indicators(head thrashes,touch avoidance,and foraging),and the development of dopaminergic neurons related to behavioral function,were evaluated to assess the effects of ionizing radiation on nervous system function in C.elegans.Various behaviors were impaired after whole-body irradiation and degeneration of dopamine neurons was observed.This suggests that 75 Gy of γ radiation is sufficient to induce nervous system dysfunction.The genes nhr-76 and crm-1,which are reported to be related to nervous system function in human and mouse,were screened by transcriptome sequencing and bioinformatics analysis after irradiation or sham irradiation.The expression levels of these two genes were increased after radiation.Next,RNAi technology was used to inhibit the expression of crm-1,a gene whose homologs are associated with motor neuron development in other species.Downregulation of crm-1 expression effectively alleviated the deleterious effects of ionizing radiation on head thrashes and touch avoidance.It was also found that the expression level of crm-1 was regulated by the nuclear receptor gene nhr-76.The results of this study suggest that knocking down the expression level of nhr-76 can reduce the expression level of crm-1,while down-regulating the expression level of crm-1 can alleviate behavioral disorders induced by ionizing radiation.Therefore,inhibition of crm-1 may be of interest as a potential therapeutic target for ionizing radiation-induced neurological dysfunction. 展开更多
关键词 behavior Caenorhabditis elegans DEGENERATION DISORDER DYSFUNCTION nerve injury nervous system NEURODEVELOPMENT neuron radiation
下载PDF
Failure mechanism and infrared radiation characteristic of hard siltstone induced by stratification effect 被引量:1
5
作者 CHENG Yun SONG Zhanping +2 位作者 XU Zhiwei YANG Tengtian TIAN Xiaoxu 《Journal of Mountain Science》 SCIE CSCD 2024年第3期1058-1074,共17页
The deformation in sedimentary rock induced by train loads has potential threat to the safe operation of tunnels. This study investigated the influence of stratification structure on the infrared radiation and tempora... The deformation in sedimentary rock induced by train loads has potential threat to the safe operation of tunnels. This study investigated the influence of stratification structure on the infrared radiation and temporal damage mechanism of hard siltstone. The uniaxial compression tests, coupled with acoustic emission(AE) and infrared radiation temperature(IRT) were conducted on siltstones with different stratification effects. The results revealed that the stratigraphic structure significantly affects the stress-strain response and strength degradation characteristics. The mechanical parameters exhibit anisotropy characteristics, and the stratification effect exhibits a negative correlation with the cracking stress and peak stress. The failure modes caused by the stratification effect show remarkable anisotropic features, including splitting failure(Ⅰ: 0°-22.50°, Ⅱ: 90°), composite failure(45°), and shearing failure(67.50°). The AE temporal sequences demonstrate a stepwise response characteristic to the loading stress level. The AE intensity indicates that the stress sensitivity of shearing failure and composite failure is generally greater than that of splitting failure. The IRT field has spatiotemporal migration and progressive dissimilation with stress loading and its dissimilation degree increases under higher stress levels. The stronger the stratification effect, the greater the dissimilation degree of the IRT field. The abnormal characteristic points of average infrared radiation temperature(AIRT) variance at local stress drop and peak stress can be used as early and late precursors to identify fracture instability. Theoretical analysis shows that the competitive relationship between compaction strengthening and fracturing damage intensifies the dissimilation of the infrared thermal field for an increasing stress level. The present study provides a theoretical reference for disaster warnings in hard sedimentary rock mass. 展开更多
关键词 Hard siltstone Failure mechanism Stratification effect Infrared radiation characteristic Temporal-damage mechanism DISSIMILATION
下载PDF
Selective internal radiation therapy segmentectomy:A new minimally invasive curative option for primary liver malignancies? 被引量:1
6
作者 Riccardo Inchingolo Francesco Cortese +5 位作者 Antonio Rosario Pisani Fabrizio Acquafredda Roberto Calbi Riccardo Memeo Fotis Anagnostopoulos Stavros Spiliopoulos 《World Journal of Gastroenterology》 SCIE CAS 2024年第18期2379-2386,共8页
Transarterial radioembolization or selective internal radiation therapy(SIRT)has emerged as a minimally invasive approach for the treatment of tumors.This percutaneous technique involves the local,intra-arterial deliv... Transarterial radioembolization or selective internal radiation therapy(SIRT)has emerged as a minimally invasive approach for the treatment of tumors.This percutaneous technique involves the local,intra-arterial delivery of radioactive microspheres directly into the tumor.Historically employed as a palliative measure for liver malignancies,SIRT has gained traction over the past decade as a potential curative option,mirroring the increasing role of radiation segmentectomy.The latest update of the BCLC hepatocellular carcinoma guidelines recognizes SIRT as an effective treatment modality comparable to other local ablative methods,particularly well-suited for patients where surgical resection or ablation is not feasible.Radiation segmentectomy is a more selective approach,aiming to deliver high-dose radiation to one to three specific hepatic segments,while minimizing damage to surrounding healthy tissue.Future research efforts in radiation segmentectomy should prioritize optimizing radiation dosimetry and refining the technique for super-selective administration of radiospheres within the designated hepatic segments. 展开更多
关键词 Transarterial radioembolization Selective internal radiation therapy radiation segmentectomy Hepatocellular carcinoma Primary liver malignancies Personalised dosimetry
下载PDF
High-speed performance self-powered short wave ultraviolet radiation detectors based onκ(ε)-Ga_(2)O_(3) 被引量:1
7
作者 Aleksei Almaev Alexander Tsymbalov +5 位作者 Bogdan Kushnarev Vladimir Nikolaev Alexei Pechnikov Mikhail Scheglov Andrei Chikiryaka Petr Korusenko 《Journal of Semiconductors》 EI CAS CSCD 2024年第4期56-62,共7页
High-speed solar-blind short wavelength ultraviolet radiation detectors based onκ(ε)-Ga_(2)O_(3)layers with Pt contacts were demonstrated and their properties were studied in detail.Theκ(ε)-Ga_(2)O_(3)layers were ... High-speed solar-blind short wavelength ultraviolet radiation detectors based onκ(ε)-Ga_(2)O_(3)layers with Pt contacts were demonstrated and their properties were studied in detail.Theκ(ε)-Ga_(2)O_(3)layers were deposited by the halide vapor phase epitaxy on patterned GaN templates with sapphire substrates.The spectral dependencies of the photoelectric properties of struc-tures were analyzed in the wavelength interval 200-370 nm.The maximum photo to dark current ratio,responsivity,detectiv-ity and external quantum efficiency of structures were determined as:180.86 arb.un.,3.57 A/W,1.78×10^(12) Hz^(0.5)∙cm·W^(-1) and 2193.6%,respectively,at a wavelength of 200 nm and an applied voltage of 1 V.The enhancement of the photoresponse was caused by the decrease in the Schottky barrier at the Pt/κ(ε)-Ga_(2)O_(3)interface under ultraviolet exposure.The detectors demon-strated could functionalize in self-powered mode due to built-in electric field at the Pt/κ(ε)-Ga_(2)O_(3)interface.The responsivity and external quantum efficiency of the structures at a wavelength of 254 nm and zero applied voltage were 0.9 mA/W and 0.46%,respectively.The rise and decay times in self-powered mode did not exceed 100 ms. 展开更多
关键词 κ(ε)-gallium oxide solar-blind shortwave ultraviolet radiation detectors self-powered operation mode
下载PDF
The Impact of Sun Radiation on the Thermal Comfort in Highly Glazed Buildings Equipped with Floor Heating Systems
8
作者 Abdelatif Merabtine Abdelhamid Kheiri +1 位作者 Salim Mokraoui Lyes Bellagh 《Fluid Dynamics & Materials Processing》 EI 2023年第4期941-951,共11页
Occupants of highly glazed buildings often suffer from thermal discomfort during the mid-seasons when no shadings are used in such buildings,especially when inertial heating systems are used.The present study is devot... Occupants of highly glazed buildings often suffer from thermal discomfort during the mid-seasons when no shadings are used in such buildings,especially when inertial heating systems are used.The present study is devoted to evaluating the impact of long solar beam exposure on the internal thermal discomfort in glazed spaces when heating is implemented through a floor system.A comprehensive experimental study is carried out using an experimental bi-climatic chamber which is fully monitored and controlled,allowing realistic simulations of the dynamic movement of the sun patch on a heated slab.The findings show that a period of discomfort as long as 8 h can occur,and persist far after the sunbeam exposure stops.During this period,the heating slab’s surface temperature,considered from an average point of view,can attain 34°C while the indoor temperature reaches 26°C.Simulations conducted using a previously developed model display a good fit with the measurements. 展开更多
关键词 Radiant system direct solar radiation thermal performance glazed spaces thermal discomfort
下载PDF
Extraction of the key infrared radiation temperature features concerning stress and crack evolution of loaded rocks
9
作者 Wei Liu Liqiang Ma +4 位作者 Michel Jaboyedoff Marc-Henri Derron Qiangqiang Gao Fengchang Bu Hai Sun 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第8期1059-1081,共23页
The infrared radiation temperature(IRT)variation concerning stress and crack evolution of rocks is a critical focus in rock mechanics domain and engineering disaster warning.In this paper,a methodology to extract the ... The infrared radiation temperature(IRT)variation concerning stress and crack evolution of rocks is a critical focus in rock mechanics domain and engineering disaster warning.In this paper,a methodology to extract the key IRT features related to stress and crack evolution of loaded rocks is proposed.Specifically,the wavelet denoising and reconstruction in thermal image sequence(WDRTIS)method is employed to eliminate temporal noise in thermal image sequences.Subsequently,the adaptive partition temperature drift correction(APTDC)method is introduced to alleviate temperature drift.On this basis,the spatial noise correction method based on threshold segmentation and adaptive median filtering(OTSU-AMF)is proposed to extract the key IRT features associated with microcracks of loaded rocks.Following temperature drift correction,IRT provides an estimation of the thermoelastic factor in rocks,typically around 5.29×10^(-5) MPa^(-1) for sandstones.Results reveal that the high-temperature concentrated region in cumulative thermal images of crack evolution(TICE)can elucidate the spatiotemporal evolution of localized damage.Additionally,heat dissipation of crack evolution(HDCE)acquired from TICE quantifies the progressive failure process of rocks.The proposed methodology enhances the reliability of IRT monitoring results and provides an innovative approach for conducting research in rock mechanics and monitoring engineering disasters. 展开更多
关键词 Infrared radiation(IR) Temperature drift Spatial background noise Rock fracture Average infrared radiation temperature(AIRT) Heat dissipation of crack evolution(HDCE)
下载PDF
Impact of Sky Conditions on Net Ecosystem Productivity over a “Floating Blanket” Wetland in Southwest China
10
作者 Yamei SHAO Huizhi LIU +4 位作者 Qun DU Yang LIU Jihua SUN Yaohui LI Jinlian LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第2期355-368,共14页
Based on eddy covariance(EC) measurements during 2016–20, the effects of sky conditions on the net ecosystem productivity(NEP) over a subtropical “floating blanket ” wetland were investigated. Sky conditions were d... Based on eddy covariance(EC) measurements during 2016–20, the effects of sky conditions on the net ecosystem productivity(NEP) over a subtropical “floating blanket ” wetland were investigated. Sky conditions were divided into overcast, cloudy, and sunny conditions. On the half-hourly timescale, the daytime NEP responded more rapidly to the changes in the total photosynthetic active radiation(PARt) under overcast and cloudy skies than that under sunny skies. The increase in the apparent quantum yield under overcast and cloudy conditions was the greatest in spring and the least in summer. Additionally, lower atmospheric vapor pressure deficit(VPD) and moderate air temperature were more conducive to enhancing the apparent quantum yield under cloudy skies. On the daily timescale, NEP and the gross primary production(GPP) were higher under cloudy or sunny conditions than those under overcast conditions across seasons. The daily NEP and GPP during the wet season peaked under cloudy skies. The daily ecosystem light use efficiency(LUE) and water use efficiency(WUE) during the wet season also changed with sky conditions and reached their maximum under overcast and cloudy skies, respectively. The diffuse photosynthetic active radiation(PAR_d) and air temperature were primarily responsible for the variation of daily NEP from half-hourly to monthly timescales, and the direct photosynthetic active radiation(PAR_b) had a secondary effect on NEP. Under sunny conditions, PAR_b and air temperature were the dominant factors controlling daily NEP. While daily NEP was mainly controlled by PAR_d under cloudy and overcast conditions. 展开更多
关键词 diffuse radiation eddy covariance NEP controlling factors WETLAND path analysis
下载PDF
Flexibility potential of Cs_(2)BX_(6)(B=Hf,Sn,Pt,Zr,Ti;X=I,Br,Cl)with application in photovoltaic devices and radiation detectors
11
作者 Songya Wang Changcheng Chen +11 位作者 Shaohang Shi Ziyi Zhang Yan Cai Shuli Gao Wen Chen Shuangna Guo Elyas Abduryim Chao Dong Xiaoning Guan Ying Liu Gang Liu Pengfei Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期271-287,I0006,共18页
As interest in double perovskites is growing,especially in applications like photovoltaic devices,understanding their mechanical properties is vital for device durability.Despite extensive exploration of structure and... As interest in double perovskites is growing,especially in applications like photovoltaic devices,understanding their mechanical properties is vital for device durability.Despite extensive exploration of structure and optical properties,research on mechanical aspects is limited.This article builds a vacancyordered double perovskite model,employing first-principles calculations to analyze mechanical,bonding,electronic,and optical properties.Results show Cs_(2)Hfl_(6),Cs_(2)SnBr_(6),Cs_(2)SnI_(6),and Cs_(2)PtBr_(6)have Young's moduli below 13 GPa,indicating flexibility.Geometric parameters explain flexibility variations with the changes of B and X site composition.Bonding characteristic exploration reveals the influence of B and X site electronegativity on mechanical strength.Cs_(2)SnBr_(6)and Cs_(2)PtBr_(6)are suitable for solar cells,while Cs_(2)HfI_(6)and Cs_(2)TiCl_(6)show potential for semi-transparent solar cells.Optical property calculations highlight the high light absorption coefficients of up to 3.5×10^(5) cm^(-1)for Cs_(2)HfI_(6)and Cs_(2)TiCl_(6).Solar cell simulation shows Cs_(2)PtBr_(6)achieves 22.4%of conversion effciency.Cs_(2)ZrCl_(6)holds promise for ionizing radiation detection with its 3.68 eV bandgap and high absorption coefficient.Vacancy-ordered double perovskites offer superior flexibility,providing valuable insights for designing stable and flexible devices.This understanding enhances the development of functional devices based on these perovskites,especially for applications requiring high stability and flexibility. 展开更多
关键词 Double perovskite Mechanical properties Flexible PHOTOVOLTAIC radiation detectors
下载PDF
Radiation of a TM mode from an open end of a three-layer dielectric capillary
12
作者 Sergey NGalyamin Alexandr MAltmark 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期311-318,共8页
Modern trends in beam-driven radiation sources include the interaction of Cherenkov wakefields in open-ended circular waveguides with complicated dielectric linings, with a three-layer dielectric capillary recently pr... Modern trends in beam-driven radiation sources include the interaction of Cherenkov wakefields in open-ended circular waveguides with complicated dielectric linings, with a three-layer dielectric capillary recently proposed to reduce radiation divergence being a representative example [Opt. Lett. 45 5416(2020)]. We present a rigorous approach that allows for an analytical description of the electromagnetic processes that occur when the structure is excited by a single waveguide TM mode. In other words, the corresponding canonical waveguide diffraction problem is solved in a rigorous formulation. This is a continuation of our previous papers which considered simpler cases with a homogeneous or two-layer dielectric filling. Here we use the same analytical approach based on the Wiener–Hopf–Fock technique and deal with the more complicated case of a three-layer dielectric lining. Using the obtained rigorous solution, we discuss the possibility of manipulating the far-field radiation pattern using a third layer made of a low permittivity material. 展开更多
关键词 diffraction radiation open-ended waveguide Wiener–Hopf technique Cherenkov radiation
下载PDF
Predicting microseismic,acoustic emission and electromagnetic radiation data using neural networks
13
作者 Yangyang Di Enyuan Wang +3 位作者 Zhonghui Li Xiaofei Liu Tao Huang Jiajie Yao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期616-629,共14页
Microseism,acoustic emission and electromagnetic radiation(M-A-E)data are usually used for predicting rockburst hazards.However,it is a great challenge to realize the prediction of M-A-E data.In this study,with the ai... Microseism,acoustic emission and electromagnetic radiation(M-A-E)data are usually used for predicting rockburst hazards.However,it is a great challenge to realize the prediction of M-A-E data.In this study,with the aid of a deep learning algorithm,a new method for the prediction of M-A-E data is proposed.In this method,an M-A-E data prediction model is built based on a variety of neural networks after analyzing numerous M-A-E data,and then the M-A-E data can be predicted.The predicted results are highly correlated with the real data collected in the field.Through field verification,the deep learning-based prediction method of M-A-E data provides quantitative prediction data for rockburst monitoring. 展开更多
关键词 MICROSEISM Acoustic emission Electromagnetic radiation Neural networks Deep learning ROCKBURST
下载PDF
Experimental investigation of spectral evolution in flash radiation by hypervelocity impact on aluminum plates
14
作者 Xing Chen Yonggang Lu +1 位作者 Zhiwen Li Zhonghua Cui 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第7期96-110,共15页
In this study,a series of hypervelocity impact tests were carried out based on a two-stage light gas gun,and the sequence spectrum and radiation evolution data of the impact products under different impact conditions ... In this study,a series of hypervelocity impact tests were carried out based on a two-stage light gas gun,and the sequence spectrum and radiation evolution data of the impact products under different impact conditions were obtained.The diameter of the projectile is 3-5 mm,the impact velocity is 3.13-6.58 km/s,and the chamber pressure is 0.56-990 Pa.The spectrum of ejected debris cloud in the 250-310 nm band were obtained using a transient spectral measurement system and a multi-channel radiometer measurement system.The test results reveal that the flash radiation intensity increases as a power function with the kinetic energy of the impact.Furthermore,the peak value of the line spectrum decreases as the chamber vacuum degree increases,while the radiation width gradually expands.The line spectrum in the spectral characterization curve corresponds to the ejected debris clouds splitting phase,which does not produce significant line spectrum during material fragmentation and is dominated by the continuum spectrum produced by blackbody radiation.There will appear one or three characteristic peaks in the flash radiation time curve,the first and second peaks correspond to the penetration phase and the third peak corresponds to the expansion phase of the ejected debris clouds on the time scale,the first and second peaks are more sensitive to the chamber vacuum degree,and when the pressure is higher than 99 Pa,the first and second characteristic peaks will disappear.The radiant heat attenuation of the flash under different impact conditions is significantly different,the attenuation exponent has a power function relationship with the impact velocity and the chamber vacuum degree,while the attenuation exponent has a linear relationship with the diameter of the projectile,the specific expression of the attenuation exponent is obtained by fitting.The findings from this research can serve as a valuable reference for remote diagnostic technologies based on flash radiation characteristics. 展开更多
关键词 Hypervelocity impact Flash radiation EVOLUTION Spectral characteristics Damage evaluation
下载PDF
The Performance of Downward Shortwave Radiation Products from Satellite and Reanalysis over the Transect of Zhongshan Station to Dome A, East Antarctica
15
作者 Jiajia JIA Zhaoliang ZENG +3 位作者 Wenqian ZHANG Xiangdong ZHENG Yaqiang WANG Minghu DING 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第8期1574-1588,1671-1675,共20页
The downward shortwave radiation(DSR) is an important part of the Earth's energy balance, driving Earth's system's energy, water, and carbon cycles. Due to the harsh Antarctic environment, the accuracy of ... The downward shortwave radiation(DSR) is an important part of the Earth's energy balance, driving Earth's system's energy, water, and carbon cycles. Due to the harsh Antarctic environment, the accuracy of DSR derived from satellite and reanalysis has not been systematically evaluated over the transect of Zhongshan station to Dome A, East Antarctica.Therefore, this study aims to evaluate DSR reanalysis products(ERA5-Land, ERA5, MERRA-2) and satellite products(CERES and ICDR) in this area. The results indicate that DSR exhibits obvious monthly and seasonal variations, with higher values in summer than in winter. The ERA5-Land(ICDR) DSR product demonstrated the highest(lowest) accuracy,as evidenced by a correlation coefficient of 0.988(0.918), a root-mean-square error of 23.919(69.383) W m^(–2), a mean bias of –1.667(–28.223) W m^(–2) and a mean absolute error of 13.37(58.99) W m^(–2). The RMSE values for the ERA5-Land reanalysis product at seven stations, namely Zhongshan, Panda 100, Panda 300, Panda 400, Taishan, Panda 1100, and Kunlun, were 30.938, 29.447, 34.507, 29.110, 20.339, 17.267, and 14.700 W m^(-2), respectively;with corresponding bias values of 9.887, –12.159, –19.181, –15.519, –8.118, 6.297, and 3.482 W m^(–2). Regarding seasonality, ERA5-Land, ERA5,and MERRA-2 reanalysis products demonstrate higher accuracies during spring and summer, while ICDR products are least accurate in autumn. Cloud cover, water vapor, total ozone, and severe weather are the main factors affecting DSR. The error of DSR products is greatest in coastal areas(particularly at the Zhongshan station) and decreases towards the inland areas of Antarctica. 展开更多
关键词 downward shortwave radiation East Antarctic reanalysis product satellite product validation
下载PDF
Isomeric fluorescence sensors for wide range detection of ionizing radiations
16
作者 Jimin Han Tianyu Yang +1 位作者 Li Yang Yuanjian Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期247-257,共11页
In order to achieve a wider range of ionizing radiations detection,novel fluorescence sensing materials have been developed that utilize the fluorescence enhancement phenomenon caused by the intramolecular photoinduce... In order to achieve a wider range of ionizing radiations detection,novel fluorescence sensing materials have been developed that utilize the fluorescence enhancement phenomenon caused by the intramolecular photoinduced electron transfer(PET)effect.Two perylene diimide isomers PDI-P and PDI-B were designed and synthesized,and their molecular structures were characterized by high-resolution Fourier transform mass spectrometry(HRMS),nuclear magnetic resonance hydrogen and carbon spectroscopy(~1H and~(13)C NMR).The interaction between ionizing radiation and fluorescent molecules was simulated by HCl titration.The results show that combining PDIs and HCl can improve fluorescence through the retro-PET process.Despite the similarities in chemical structures,the fluorescent enhancement multiple of PDI-B with aromatic amine as electron donor is much higher than that of PDI-P with alkyl amine.In the direct irradiation experiments of ionizing radiation,the emission enhancement multiples of PDI-P and PDI-B are 2.01 and 45.4,respectively.Furthermore,density functional theory(DFT)and time-dependent density functional theory(TDDFT)calculations indicate that the HOMO and HOMO-1 energy ranges of PDI-P and PDI-B are 0.54 e V and 1.13 e V,respectively.A wider energy range has a stronger driving force on electrons,which is conducive to fluorescence quenching.Both femtosecond transient absorption spectroscopy(fs-TAS)and transient fluorescence spectroscopy(TFS)tests show that PDI-B has shorter charge separation lifetime and higher electron transfer rate constant.Although both isomers can significantly reduce LOD during PET process,PDI-B with aromatic amine has a wider detection range of 0.118—240 Gy due to its larger emission enhancement,which is a leap of three orders of magnitude.It breaks through the detection range of gamma radiation reported in existing studies,and provides theoretical support for the further study of sensitive and effective new materials for ionizing radiation detection. 展开更多
关键词 Perylene imide Intramolecular PET Ionizing radiation detection Fluorescence sensor ISOMERS
下载PDF
Effect of combination of ultraviolet radiation and biocide on fungal-induced corrosion of high-strength 7075 aluminum alloy
17
作者 Zheng-yu JIN Chao WANG +1 位作者 Hai-xian LIU Hong-wei LIU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第9期2787-2799,共13页
The effect of ultraviolet(UV)radiation and biocide benzalkonium chloride(BKC)on fungal-induced corrosion of AA7075 induced by Aspergillus terreus(A.terreus)was deeply studied using analysis of biological activity,surf... The effect of ultraviolet(UV)radiation and biocide benzalkonium chloride(BKC)on fungal-induced corrosion of AA7075 induced by Aspergillus terreus(A.terreus)was deeply studied using analysis of biological activity,surface analysis,and electrochemical measurements.Results demonstrated that the planktonic and sessile spore concentrations decline by more than two orders of magnitude when UV radiation and BKC are combinedly used compared with the control.UV radiation can inhibit the biological activity of A.terreus and influence the stability of passive film of AA7075.Except for direct disinfection,the physical adsorption of BKC on the specimen can effectively inhibit the attachment of A.terreus.The combination of UV radiation and BKC can much more effectively inhibit the corrosion of AA,especially pitting corrosion,due to their synergistic effect.The combined application of UV radiation and BKC can be a good method to effectively inhibit fungal-induced corrosion. 展开更多
关键词 fungal-induced corrosion Aspergillus terreus 7075 aluminum alloy ultraviolet radiation benzalkonium chloride
下载PDF
Properties of radiation defects and threshold energy of displacement in zirconium hydride obtained by new deep-learning potential
18
作者 王玺 唐孟 +3 位作者 蒋明璇 陈阳春 刘智骁 邓辉球 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期456-465,共10页
Zirconium hydride(ZrH_(2)) is an ideal neutron moderator material. However, radiation effect significantly changes its properties, which affect its behavior and the lifespan of the reactor. The threshold energy of dis... Zirconium hydride(ZrH_(2)) is an ideal neutron moderator material. However, radiation effect significantly changes its properties, which affect its behavior and the lifespan of the reactor. The threshold energy of displacement is an important quantity of the number of radiation defects produced, which helps us to predict the evolution of radiation defects in ZrH_(2).Molecular dynamics(MD) and ab initio molecular dynamics(AIMD) are two main methods of calculating the threshold energy of displacement. The MD simulations with empirical potentials often cannot accurately depict the transitional states that lattice atoms must surpass to reach an interstitial state. Additionally, the AIMD method is unable to perform largescale calculation, which poses a computational challenge beyond the simulation range of density functional theory. Machine learning potentials are renowned for their high accuracy and efficiency, making them an increasingly preferred choice for molecular dynamics simulations. In this work, we develop an accurate potential energy model for the ZrH_(2) system by using the deep-potential(DP) method. The DP model has a high degree of agreement with first-principles calculations for the typical defect energy and mechanical properties of the ZrH_(2) system, including the basic bulk properties, formation energy of point defects, as well as diffusion behavior of hydrogen and zirconium. By integrating the DP model with Ziegler–Biersack–Littmark(ZBL) potential, we can predict the threshold energy of displacement of zirconium and hydrogen in ε-ZrH_(2). 展开更多
关键词 zirconium hydride deep learning potential radiation defects molecular dynamics threshold energy of displacement
下载PDF
Operando measurement of lattice deformation profiles of synchrotron radiation monochromator
19
作者 Yue Zhang Zhong-Liang Li +4 位作者 Shang-Yu Si Lian Xue Hong-Xin Luo Xiao-Wei Zhang Jun Hu 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第7期8-19,共12页
This study presents a new method for characterizing the thermal lattice deformation of a monochromator with high precision under service conditions and first reports the operando measurements of nanoscale thermal latt... This study presents a new method for characterizing the thermal lattice deformation of a monochromator with high precision under service conditions and first reports the operando measurements of nanoscale thermal lattice deformation on a double-crystal monochromator at different incident powers.The nanoscale thermal lattice deformation of the monochromator first crystal was obtained by analyzing the intensity of the distorted DuMond diagrams.DuMond diagrams of the 333 diffraction index,sensitive to lattice deformation,were obtained directly using a 2D detector and an analyzer crystal orthogonal to the monochromator.With increasing incident power and power density,the maximum height of the lattice deformation increased from 3.2 to 18.5 nm,and the deformation coefficient of the maximum height increased from 1.1 to 3.2 nm/W.The maximum relative standard deviation was 4.2%,and the maximum standard deviation was 0.1 nm.Based on the measured thermal deformations,the flux saturation phenomenon and critical point for the linear operation of the monochromator were predicted with increasing incident power.This study provides a simple solution to the problem of the lower precision of synchrotron radiation monochromator characterizations compared to simulations. 展开更多
关键词 Synchrotron radiation MONOCHROMATOR Lattice deformation X-ray dynamic diffraction
下载PDF
Effect of surface modification on the radiation stability of diamond ohmic contacts
20
作者 牟恋希 赵上熳 +7 位作者 王鹏 原晓芦 刘金龙 朱志甫 陈良贤 魏俊俊 欧阳晓平 李成明 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期444-448,共5页
The ohmic contact interface between diamond and metal is essential for the application of diamond detectors.Surface modification can significantly affect the contact performance and eliminate the interface polarizatio... The ohmic contact interface between diamond and metal is essential for the application of diamond detectors.Surface modification can significantly affect the contact performance and eliminate the interface polarization effect.However,the radiation stability of a diamond detector is also sensitive to surface modification.In this work,the influence of surface modification technology on a diamond ohmic contact under high-energy radiation was investigated.Before radiation,the specific contact resistivities(ρc)between Ti/Pt/Au-hydrogen-terminated diamond(H-diamond)and Ti/Pt/Au-oxygenterminated diamond(O-diamond)were 2.0×10^(-4)W·cm^(2) and 4.3×10^(-3)Wcm^(2),respectively.After 10 MeV electron radiation,the ρc of Ti/Pt/Au H-diamond and Ti/Pt/Au O-diamond were 5.3×10^(-3)W·cm^(2)and 9.1×10^(-3)W·cm^(2),respectively.The rates of change of ρc of H-diamond and O-diamond after radiation were 2550%and 112%,respectively.The electron radiation promotes bond reconstruction of the diamond surface,resulting in an increase in ρc. 展开更多
关键词 single crystal diamond ohmic contact surface modification electron radiation
下载PDF
上一页 1 2 228 下一页 到第
使用帮助 返回顶部