The expediency of development of one of the newest highly effective radiation-protective materials—layered composites of “light metal/heavy metal” type is substantiated. The characteristics of the internal architec...The expediency of development of one of the newest highly effective radiation-protective materials—layered composites of “light metal/heavy metal” type is substantiated. The characteristics of the internal architecture of composites of Al/Pb type made by consecutive application of vacuum and normal atmospheric rolling are adduced. The differences between the radioisotope and accelerating techniques of experimental testing of radiation-protective properties of materials are described. The results of the testing of composites and the influence of their structure on radiation-protective properties of the investigated materials are characterized. It is shown that the radiation-protective efficiency of composites certain structures may be 30% - 40% higher than the aluminum. This gives the opportunity to reduce the weight of radiation-protective structure at preservation of effectiveness of protection at aluminum level, or to increase the effectiveness of protection at constant weight of this structure.展开更多
Gold nanoparticles(AuNPs)could serve as pot ential radiother apy sensitizers because of their exceptional biocompatibility and high.Z material nature;however,since in vitro and in vivo behaviors of AuNPs are determine...Gold nanoparticles(AuNPs)could serve as pot ential radiother apy sensitizers because of their exceptional biocompatibility and high.Z material nature;however,since in vitro and in vivo behaviors of AuNPs are determined not only by their particle size but also by their surface chemistries,whether surface ligands can affect their radiosensitization has seldom been investi-gated in the radiosensitization of AuNPs.By conducting head-to-head comparison on radio-sensitization of two kinds of ultrasmall(~2 nm)near-infrared(NIR)emitting AuNPs that are coated with zwitterionic glutathione and neutr al polyethylene glyol(PEG)ligands,respectively,we found that zwitterionic glut athione coated AuNPs(GS-AuNPs)can reduce survival rates of MCF-7 cells under irr adiation of clinically used megavoltage photon beam at low dosage of~2.25 Gy.On the other hand,PEG-AuNPs can serve as a radiation-protecting agent and enabled MCF-7 cells more resistant to the irradiation,clearly indicating the key role of surface cheistry in radiosensitization of AuNPs.More detailed studies suggested that such difference was inde-pendent of cellular uptake and its eficiency,but might be related to the ligand-induced difference in photoelectron generation and/or inter actions between AuNPs and X-ray triggered reactive oxygen species(ROS).展开更多
Considering the unique properties of small spacecraft, such as light weight, low power-consumption and high heat flux density, a new kind of lightweight boron carbide (B4C) radiation-protection coating material was ...Considering the unique properties of small spacecraft, such as light weight, low power-consumption and high heat flux density, a new kind of lightweight boron carbide (B4C) radiation-protection coating material was proposed. New techniques for preparing LSMO thermal control coating and B4C radiation-protection coating were developed. The sample piece of multi-functional structure was manufactured by using the proposed materials, and a series of performance tests, such as thermal control and radiation-protection behaviors were evaluated. Test results show that: the emissivity of the multi-functional structure varies from 0.42 to 0.86 at 240 K to 353 K and the phase transition temperature is about 260 K. The electron radiation-protection ability of the multi-functional structure is 3.3 times better than that of Al material. The performance index of this multi-functional structure can meet the requirements for space application in on-board electronic equipment.展开更多
文摘The expediency of development of one of the newest highly effective radiation-protective materials—layered composites of “light metal/heavy metal” type is substantiated. The characteristics of the internal architecture of composites of Al/Pb type made by consecutive application of vacuum and normal atmospheric rolling are adduced. The differences between the radioisotope and accelerating techniques of experimental testing of radiation-protective properties of materials are described. The results of the testing of composites and the influence of their structure on radiation-protective properties of the investigated materials are characterized. It is shown that the radiation-protective efficiency of composites certain structures may be 30% - 40% higher than the aluminum. This gives the opportunity to reduce the weight of radiation-protective structure at preservation of effectiveness of protection at aluminum level, or to increase the effectiveness of protection at constant weight of this structure.
基金supported by the NIH(1R01DK103363)CPRIT(RP120588 and RP140544)the start-up fund from the University of Texas at Dallas.
文摘Gold nanoparticles(AuNPs)could serve as pot ential radiother apy sensitizers because of their exceptional biocompatibility and high.Z material nature;however,since in vitro and in vivo behaviors of AuNPs are determined not only by their particle size but also by their surface chemistries,whether surface ligands can affect their radiosensitization has seldom been investi-gated in the radiosensitization of AuNPs.By conducting head-to-head comparison on radio-sensitization of two kinds of ultrasmall(~2 nm)near-infrared(NIR)emitting AuNPs that are coated with zwitterionic glutathione and neutr al polyethylene glyol(PEG)ligands,respectively,we found that zwitterionic glut athione coated AuNPs(GS-AuNPs)can reduce survival rates of MCF-7 cells under irr adiation of clinically used megavoltage photon beam at low dosage of~2.25 Gy.On the other hand,PEG-AuNPs can serve as a radiation-protecting agent and enabled MCF-7 cells more resistant to the irradiation,clearly indicating the key role of surface cheistry in radiosensitization of AuNPs.More detailed studies suggested that such difference was inde-pendent of cellular uptake and its eficiency,but might be related to the ligand-induced difference in photoelectron generation and/or inter actions between AuNPs and X-ray triggered reactive oxygen species(ROS).
基金support from the Major State Basic Research Development Program (No. 51312)the Fundamental Research Funds for the Central Universities(No. HIT.KLOF.2010046)
文摘Considering the unique properties of small spacecraft, such as light weight, low power-consumption and high heat flux density, a new kind of lightweight boron carbide (B4C) radiation-protection coating material was proposed. New techniques for preparing LSMO thermal control coating and B4C radiation-protection coating were developed. The sample piece of multi-functional structure was manufactured by using the proposed materials, and a series of performance tests, such as thermal control and radiation-protection behaviors were evaluated. Test results show that: the emissivity of the multi-functional structure varies from 0.42 to 0.86 at 240 K to 353 K and the phase transition temperature is about 260 K. The electron radiation-protection ability of the multi-functional structure is 3.3 times better than that of Al material. The performance index of this multi-functional structure can meet the requirements for space application in on-board electronic equipment.