期刊文献+
共找到3,223篇文章
< 1 2 162 >
每页显示 20 50 100
Calculation of Mass Concrete Temperature and Creep Stress under the Influence of Local Air Heat Transfer
1
作者 Heng Zhang Chao Su +2 位作者 Xiaohu Chen Zhizhong Song Weijie Zhan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2977-3000,共24页
Temperature-induced cracking during the construction of mass concrete is a significant concern.Numerical simulations of concrete temperature have primarily assumed that the concrete is placed in an open environment.Th... Temperature-induced cracking during the construction of mass concrete is a significant concern.Numerical simulations of concrete temperature have primarily assumed that the concrete is placed in an open environment.The problem of heat transfer between the air and concrete has been simplified to the concrete’s heat dissipation boundary.However,in the case of tubular concrete structures,where air inlet and outlet are relatively limited,the internal air temperature does not dissipate promptly to the external environment as it rises.To accurately simulate the temperature and creep stress in tubular concrete structures with enclosed air spaces during construction,we establish an air–concrete coupled heat transfer model according to the principles of conjugate heat transfer,and the accuracy of the model is verified through experiments.Furthermore,we conduct a case study to analyze the impact of airflow within the ship lock corridor on concrete temperature and creep stress.The results demonstrate that enhancing airflow within the corridor can significantly reduce the maximum concrete temperature.Compared with cases in which airflow within the corridor is neglected,the maximum concrete temperature and maximum tensile stress can be reduced by 12.5°C and 0.7 MPa,respectively,under a wind speed of 4 m/s.The results of the traditional calculation method are relatively close to those obtained at a wind speed of 1 m/s.However,the temperature reduction process in the traditional method is faster,and the method yields greater tensile stress values for the corridor location. 展开更多
关键词 Conjugate heat transfer temperature field mass concrete creep stress
下载PDF
Calculation of Mass Concrete Temperature Containing Cooling Water Pipe Based on Substructure and Iteration Algorithm
2
作者 Heng Zhang Chao Su +2 位作者 Zhizhong Song Zhenzhong Shen Huiguang Lei 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期813-826,共14页
Mathematical physics equations are often utilized to describe physical phenomena in various fields of science and engineering.One such equation is the Fourier equation,which is a commonly used and effective method for... Mathematical physics equations are often utilized to describe physical phenomena in various fields of science and engineering.One such equation is the Fourier equation,which is a commonly used and effective method for evaluating the effectiveness of temperature control measures for mass concrete.One important measure for temperature control in mass concrete is the use of cooling water pipes.However,the mismatch of grids between large-scale concrete models and small-scale cooling pipe models can result in a significant waste of calculation time when using the finite element method.Moreover,the temperature of the water in the cooling pipe needs to be iteratively calculated during the thermal transfer process.The substructure method can effectively solve this problem,and it has been validated by scholars.The Abaqus/Python secondary development technology provides engineers with enough flexibility to combine the substructure method with an iteration algorithm,which enables the creation of a parametric modeling calculation for cooling water pipes.This paper proposes such a method,which involves iterating the water pipe boundary and establishing the water pipe unit substructure to numerically simulate the concrete temperature field that contains a cooling water pipe.To verify the feasibility and accuracy of the proposed method,two classic numerical examples were analyzed.The results showed that this method has good applicability in cooling pipe calculations.When the value of the iteration parameterαis 0.4,the boundary temperature of the cooling water pipes can meet the accuracy requirements after 4∼5 iterations,effectively improving the computational efficiency.Overall,this approach provides a useful tool for engineers to analyze the temperature control measures accurately and efficiently for mass concrete,such as cooling water pipes,using Abaqus/Python secondary development. 展开更多
关键词 Fourier equation cooling water pipe mass concrete iteration algorithm
下载PDF
On the Preparation of Low-Temperature-Rise and Low-Shrinkage Concrete Based on Phosphorus Slag
3
作者 Jianlong Jin Jingjing Ding +2 位作者 Long Xiong Ming Bao Peng Zeng 《Fluid Dynamics & Materials Processing》 EI 2024年第4期803-814,共12页
The effects of different contents of a MgO expansive agent and phosphorus slag on the mechanical properties,shrinkage behavior,and the heat of hydration of concrete were studied.The slump flow,setting time,dry shrinka... The effects of different contents of a MgO expansive agent and phosphorus slag on the mechanical properties,shrinkage behavior,and the heat of hydration of concrete were studied.The slump flow,setting time,dry shrinkage,and hydration heat were used as sensitive parameters to assess the response of the considered specimens.As shown by the results,in general,with an increase in the phosphorus slag content,the hydration heat of concrete decreases for all ages,but the early strength displays a downward trend and the dry shrinkage rate increases.The 90-d strength and dry shrinkage of concrete could be improved with a phosphorus residue content between 0%-20%,with the best performances in terms of mechanical properties and shrinkage characteristics being achieved for a content of 20 kg/m^(3).On the basis of these results,it can be concluded that appropriate amounts of phosphorus slag and MgO expansive agent can be used to improve the compressive strength of concrete in the later stage by reducing the hydration heat and dry shrinkage rate,respectively. 展开更多
关键词 Phosphorus slag MgO expansion agent mass concrete hydration heat
下载PDF
Stability analyses of the mass abrasive projectile high-speed penetrating into concrete target. Part Ⅰ: Engineering model for the mass loss and nose-blunting of ogive-nosed projectiles 被引量:6
4
作者 Hao Wu Xiao-Wei Chen +1 位作者 Li-Lin He Qin Fang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第6期933-942,共10页
The mass loss and nose blunting of a projectile during high-speed deep penetration into concrete target may cause structural destruction and ballistic trajectory instability of the penetrator,obviously reducing the pe... The mass loss and nose blunting of a projectile during high-speed deep penetration into concrete target may cause structural destruction and ballistic trajectory instability of the penetrator,obviously reducing the penetration efficiency of penetrator.Provided that the work of friction between projectile and target is totally transformed into the heat to melt penetrator material at its nose surface,an engineering model is established for the mass loss and nose-blunting of the ogive-nosed projectile.A dimensionless formula for the relative mass loss of projectile is obtained by introducing the dimensionless impact function I and geometry function N of the projectile.The critical value V c0of the initial striking velocity is formulated,and the mass loss of projectile tends to increase weakly nonlinearly with I/N when V0〉V c0,whilst the mass loss is proportional to the initial kinetic energy of projectile when V0 展开更多
关键词 PROJECTILE High-speed penetration concrete mass loss Nose-blunting
下载PDF
Feasibility Research of Using Phase Change Materials to Reduce the Inner Temperature Rise of Mass Concrete 被引量:3
5
作者 钱春香 GAO Guibo +1 位作者 HE Zhihai 李瑞阳 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第5期989-994,共6页
In order to evaluate the feasibility of using phase change materials to reduce the inner temperature rise of mass concrete, the interior temperature of normal concrete specimen under semi-adiabatic curing condition wa... In order to evaluate the feasibility of using phase change materials to reduce the inner temperature rise of mass concrete, the interior temperature of normal concrete specimen under semi-adiabatic curing condition was measured. The effect of embedding phase change material(PCM) and replacing water with suspension of phase change material(SPCM) as cooling fluid were compared in the experiment. The cooling effect and the affecting factors were analyzed and calculated. The research results showed that the peak of inner temperature could be decreased obviously by the method of pre-embeding PCM in concrete, however, this method is only effective in the initial stage of cement hydration process. Besides, the volume of PCM is rather big and the PCM can not be used circularly, which means that this method can only be used under special condition and the feasibility is low. When SPCM was used as cooling fluid, the interior temperature rise of mass concrete was reduced more effectively, and the temperature grads peak around the cooling pipe was also reduced. Besides, both the SPCM consumption amount and the circulation time were decreased, and most important is that the SPCM is recyclable. The technical and economical feasibility of using SPCM to reduce the inner temperature rise of mass concrete is high. 展开更多
关键词 phase change material suspension of phase change material mass concrete interior temperature rise FEASIBILITY
下载PDF
Self-catalyzed Effect and Cracking Risk in Mass Concrete Containing Micro-slag 被引量:1
6
作者 胡贞武 李相国 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2006年第z1期99-102,共4页
The main results obtained from the experimental and engineering investigation on the heat evolution and cracking risk of a furnace concrete block were presented. The heat evolution of experimental mortars containing m... The main results obtained from the experimental and engineering investigation on the heat evolution and cracking risk of a furnace concrete block were presented. The heat evolution of experimental mortars containing micro-slag under different environmental temperatures was instrumented in order to investigate the self-catalyzed effect, which was discovered in engineering. More-over,the thermal stress of the furnace concrete due to heat temperature rise was calculated to evaluate the cracking risk of mass concrete containing micro-slag due to self-catalyzed effect. The experimental results illustrate that with the development of hydration and initial temperature of mixture, the hydra-tion can be also accelerated and temperature of concrete will be continued to rise, which was the self-catalyzed effect. And the thermal stress due to self-catalyzed effect could not result in the cracking of furnace concrete. 展开更多
关键词 mass concrete MICRO-SLAG self-catalyzed effect CRACKING hydration heat thermal stress
下载PDF
Design and Preparation of High Elastic Modulus Self-compacting Concrete for Pre-stressed Mass Concrete Structures 被引量:1
7
作者 祝雯 CHEN Yang +4 位作者 LI Fangxian ZHANG Tongsheng HU Jie 韦江雄 YU Qijun 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第3期563-573,共11页
Requirements of self-compacting concrete (SCC) applied in pre-stressed mass concrete structures include high fluidity, high elastic modulus, low adiabatic temperature rise and low drying shrinkage, which cannot be s... Requirements of self-compacting concrete (SCC) applied in pre-stressed mass concrete structures include high fluidity, high elastic modulus, low adiabatic temperature rise and low drying shrinkage, which cannot be satisfied by ordinary SCC. In this study, in order to solve the problem, a few principles of SCC design were proposed and the effects of binder amount, fly ash (FA) substitution, aggregate content and gradation on the workability, temperature rise, drying shrinkage and elastic modulus of SCC were investigated. The results and analysis indicate that the primary factor influencing the fluidity was paste content, and the main methods improving the elastic modulusof SCC were a lower sand ratio and an optimized coarse aggregate gradation. Lower adiabatic temperature rise and drying shrinkage were beneficial for decreasing the cement content. Further, based on the optimization of mixture, a C50 grade SCC (with binder amount of only 480 kg/ m3, fly ash substitution of 40%, sand ratio of 51% and proper coarse aggregate gradation (Vs.~0 mm: V10-16 ram: V16.20 mm= 30%: 30%:40%)) with superior workability was successfully prepared. The temperature rise and drying shrinkage of the prepared SCC were significantly reduced, and the elastic modulus reached 37.6 GPa at 28 d. 展开更多
关键词 self-compacting concrete pre-stressed mass structure high elastic modulus adiabatic temperature rise drying shrinkage
下载PDF
Use of ANSYS for Thermal Analysis in Mass Concrete 被引量:2
8
作者 Nailde de Amorim Coelho Lineu Jose Pedroso Joao Henrique da Silva Rego Antonio Alberto Nepomuceno 《Journal of Civil Engineering and Architecture》 2014年第7期860-868,共9页
关键词 ANSYS有限元软件 大体积混凝土 热分析 温度上升 有限元法分析 建设工程 混凝土裂纹 混凝土浇筑
下载PDF
Measuring Thermal Mass of Sustainable Concrete Mixes 被引量:1
9
作者 Omer Damdelen Costas Georgopoulos Mukesh Limbachiya 《Journal of Civil Engineering and Architecture》 2014年第2期213-220,共8页
关键词 混凝土混合料 质量 热式 性能评价 实验室实验 高炉矿渣 性能影响 建筑系统
下载PDF
Direct incorporation of paraffin wax as phase change material into mass concrete for temperature control: mechanical and thermal properties
10
作者 Tao Luo JuanJuan Ma +4 位作者 Fang Liu MingYi Zhang ChaoWei Sun YanJun Ji XiaoSa Yuan 《Research in Cold and Arid Regions》 CSCD 2021年第1期30-42,共13页
Taking advantage of heat absorbing and releasing capability of phase change material(PCM),Paraffin wax-based concrete was prepared to assess its automatic temperature control performance.The mechanical properties of P... Taking advantage of heat absorbing and releasing capability of phase change material(PCM),Paraffin wax-based concrete was prepared to assess its automatic temperature control performance.The mechanical properties of PCM concrete with eight different Paraffin wax contents were tested by the cube compression test and four-point bending test.The more Paraffin wax incorporated,the greater loss of the compressive strength and bending strength.Based on the mechanical results,four contents of Paraffin wax were chosen for studying PCM concrete's thermal properties,including thermal conductivity,thermal diffusivity,specific heat capacity,thermal expansion coefficient and adiabatic temperature rise.When the Paraffin wax content increases from 10%to 20%,the thermal conductivity and the thermal diffusivity decrease from 7.31 kJ/(m·h·°C)to 7.10 kJ/(m·h·°C)and from 3.03×10−3 m2/h to 2.44×10−3 m2/h,respectively.Meanwhile the specific heat capacity and thermal expansion coefficient rise from 5.38×10−1 kJ/(kg·°C)to 5.76×10−1 kJ/(kg·°C)and from 9.63×10−6/°C to 14.02×10−6/°C,respectively.The adiabatic temperature rise is found to decrease with an increasing Paraffin wax content.Considering both the mechanical and thermal properties,15%of Paraffin wax was elected for the mass concrete model test,and the model test results confirm the effect of Paraffin wax in automatic mass concrete temperature control. 展开更多
关键词 phase change material Paraffin wax temperature control mechanical properties thermal properties mass concrete
下载PDF
Spatial Thermal Crack Control in Mass Concrete
11
作者 Munishi Fred Abel ZHANG Shengdong LI Minying 《结构工程师》 北大核心 2012年第6期54-59,共6页
The finite element software,MIDAS is used to predict the distribution of temperatures and,analyzes the cracking control methods within a hydrating mass concrete.The temperature control of mass concrete has great signi... The finite element software,MIDAS is used to predict the distribution of temperatures and,analyzes the cracking control methods within a hydrating mass concrete.The temperature control of mass concrete has great significance in assuring the project quality.Adiabatic or semi adiabatic temperature measurement is mostly used for measuring and controlling the temperature fluctuation during construction.The temperature distribution produced by the finite element thermal analysis of the model is used to quantify the maximum allowable internal temperature difference before crack initiation on concrete.This study analyzes the data from one high-rise structure project in Shanghai are used to verify the finite element model developed.Results suggest that reliance on a limiting maximum temperature differential to control cracking in massive concrete applications should be supplemented with a requirement for analysis showing the calculated spatial temperature and stress response to the predicted temperature distribution within the concrete,to ensure that the induced tensile stresses will not exceed the tensile strength of the concrete and so minimize the risk of having thermal cracks at early age. 展开更多
关键词 温度分布 混凝土 施工技术 应力
下载PDF
Anti-Crack Performance of Low-Heat Portland Cement Concrete 被引量:4
12
作者 杨华全 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2007年第3期555-559,共5页
The properties of low-heat Portland cement concrete(LHC) were studied in detail. The experimental results show that the LHC concrete has characteristics of a higher physical mechanical behavior, deformation and dura... The properties of low-heat Portland cement concrete(LHC) were studied in detail. The experimental results show that the LHC concrete has characteristics of a higher physical mechanical behavior, deformation and durability. Compared with moderate-heat Portland cement(MHC), the average hydration heat of LHC concrete is reduced by about 17.5%. Under same mixing proportion, the adiabatic temperature rise of LHC concrete was reduced by 2 ℃-3 ℃,and the limits tension of LHC concrete was increased by 10× 10^-6-15×10^-6 than that of MHC. Moreover, it is indicated that LHC concrete has a better anti-crack behavior than MHC concrete. 展开更多
关键词 low-heat portland cement mass concrete high crack resistance moderate-heat portland cement
下载PDF
Gamma-ray shielding study of light to heavyweight concretes using MCNP-4C code 被引量:2
13
作者 Reza Bagheri Alireza Khorrami Moghaddam Ali Yousefi 《Nuclear Science and Techniques》 SCIE CAS CSCD 2017年第2期1-7,共7页
In this work, linear and mass attenuation coefficients, half and tenth-value layers, effective atomic number and electron density of different types of concretes were determined at 316.51, 468.07, 511, 662, 1173 and 1... In this work, linear and mass attenuation coefficients, half and tenth-value layers, effective atomic number and electron density of different types of concretes were determined at 316.51, 468.07, 511, 662, 1173 and 1332 keV using MCNP-4C code and Win XCom programs. The MCNP-4C and Win XCom results agreed well with each other, with differences of \±1.9%. The results agreed with available experimental data, too, with differences of \±6%.The MCNP-4C results showed better agreement with the experimental data than the Win XCom results. Also, it was found that the effective electron density of studied concretes varies in the range of(2.83–3.2) 9 10^(23)electron/g. 展开更多
关键词 concrete SHIELDING MCNP-4C WinXCom mass ATTENUATION COEFFICIENT Effective ATOMIC number and electron density
下载PDF
The Abrasion-resistance Investigation of Rubberized Concrete 被引量:1
14
作者 亢景付 ZHANG Bo LI Guangu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第6期1144-1148,共5页
The abrasion resistance properties of rubberized concrete were comparatively studied by taking silica fume and crumb tire rubber as the additives. The abrasion tests were conducted in accordance with the Chinese stand... The abrasion resistance properties of rubberized concrete were comparatively studied by taking silica fume and crumb tire rubber as the additives. The abrasion tests were conducted in accordance with the Chinese standard test method DL/T 5150 - 2001, two recommended test methods: under water method and ring method, were used. The crumb tire rubbers with the sieve size of 8-mesh and 16-mesh were incorporated into the concrete by replacing same volume of sand and as an additive. The abrasion resistance of concrete was evaluated according to the abrasion resistance strength and the mass loss. Test results show that the addition of silica fume enhanced both compressive strength and abrasion resistance of concrete, and the addition of crumb rubber reduced the compressive strength but increased notably the abrasion resistance of the concrete. Silica fume concrete performed a better abrasion resistance than control concrete, and the rubberized concrete performed a much better abrasion resistance than silica fume concrete. The abrasion resistance of rubberized concrete increased with the increase of rubber content. 展开更多
关键词 abrasion resistance silica fume concrete rubberized concrete mass loss
下载PDF
Seepage simulation of high concrete-faced rockfill dams based on generalized equivalent continuum model 被引量:6
15
作者 Shou-kai Chen Qi-dong He Ji-gang Cao 《Water Science and Engineering》 EI CAS CSCD 2018年第3期250-257,共8页
This research focused on the three-dimensional(3 D) seepage field simulation of a high concrete-faced rockfill dam(CFRD) under complex hydraulic conditions. A generalized equivalent continuum model of fractured rock m... This research focused on the three-dimensional(3 D) seepage field simulation of a high concrete-faced rockfill dam(CFRD) under complex hydraulic conditions. A generalized equivalent continuum model of fractured rock mass was used for equivalent continuous seepage field analysis based on the improved node virtual flow method. Using a high CFRD as an example, the generalized equivalent continuum range was determined, and a finite element model was established based on the terrain and geological conditions, as well as structural face characteristics of the dam area. The equivalent seepage coefficients of different material zones or positions in the dam foundation were calculated with the Snow model or inverse analysis. Then, the 3 D seepage field in the dam area was calculated under the normal water storage conditions, and the corresponding water head distribution, seepage flow, seepage gradient, and seepage characteristics in the dam area were analyzed. The results show that the generalized equivalent continuum model can effectively simulate overall seepage patterns of the CFRD under complex hydraulic conditions and provide a reference for seepage analysis of similar CFRDs. 展开更多
关键词 concrete-faced ROCKFILL dam(CFRD) GENERALIZED equivalent CONTINUUM model Node virtual flow method Fractured rock mass SEEPAGE field SEEPAGE coefficient
下载PDF
Effect of molecular structure and slump loss resistance of polycarboxylate superplasticizers on self-compacting concrete
16
作者 兰自栋 《Journal of Chongqing University》 CAS 2016年第1期35-42,共8页
A new kind of polycarboxylate superplasticizer with high slump loss resistance was obtained by designing scheduled molecular structure.The number average molecular mass of the polymer was characterized by the gel perm... A new kind of polycarboxylate superplasticizer with high slump loss resistance was obtained by designing scheduled molecular structure.The number average molecular mass of the polymer was characterized by the gel permeation chromatography measurements.And chemical structure of the polymer was observed by the Fourier transform infrared spectroscopy(FT-IR).The results show that the good workable maintaining of self-compacting concrete could be achieved through direct adjustment of number average molecular mass and different unsaturated monomer in synthetic process.The FT-IR analysis illustrated that the high slump loss resistance of polycarboxylate superplasticizers with ester and carboxyl group and expectations of molecular structure were designed. 展开更多
关键词 high slump loss resistance of polycarboxylate superplasticizers self-compacting concrete number average molecular mass WORKABILITY
下载PDF
Consideration of Viscoelasticity in Time Step FEM-Based Restraint Analyses of Hardening Concrete
17
作者 Dirk Schlicke Nguyen Viet Tue 《Journal of Modern Physics》 2013年第10期9-14,共6页
Concrete structures may suffer considerable restraint stresses during their hardening period. This is caused by several deformation impacts, especially temperature field changings due to hydration heat and volume chan... Concrete structures may suffer considerable restraint stresses during their hardening period. This is caused by several deformation impacts, especially temperature field changings due to hydration heat and volume changes due to autogenous shrinkage. Mainly affected are massive concrete members, but also the application of new concrete types or the erection of outstanding constructions requires further investigations in this context. 3D-FEM analyses of hydration heat induced temperature development in combination with the well known shrinkage give sufficient results for the deformation impact. The according elastic restraint stresses can be determined with consideration of the concrete’s rising elastic modulus and the restraint degree of the system. But due to duration of the heat flow process, the height of restraint stresses is strongly dependent from the viscoelasticity of the concrete. The viscoelastic effects consist of many components constituted by changing material properties influencing themselves. In practice, different simplified approaches are available for considering this in calculations. Their implementation in time step analyses is not generally admitted and requires expertise. In contrast, present research develops material models needing specific input parameters for every use case. This contribution focuses on a practicable approach considering the superposition of the viscoelastic behaviour of every stress increment in time step FEM analysis. The differentiation between the pure viscoelastic material behaviour (as it is given in the codes for idealistic conditions like creep or relaxation) and the according viscoelastic system response (addicted to the systems variable restraint degree) allows the transfer of this model into practice. As one application example of this approach, the compatibility check and the FEM-based recalculation of the monitoring program of a massive power plant slab will be presented. 展开更多
关键词 VISCOELASTICITY HARDENING mass concrete FEM RESTRAINT Analysis Time DEPENDANT Material Properties HYDRATION Heat Evolution of Stiffness Quantification of RESTRAINT Stresses In-Situ Measurements Recalculation of Measurement Data
下载PDF
Thermal and Stress Analysis of Early Age Concrete for Spread Footing
18
作者 丁红岩 张磊 +1 位作者 张浦阳 朱奇 《Transactions of Tianjin University》 EI CAS 2015年第6期477-483,共7页
The early age performance of spread footing, especially the growth of cracks, is deeply influenced by the heat of hydration of cement. In this paper, 3D finite element method(FEM)models are set up to analyze the tempe... The early age performance of spread footing, especially the growth of cracks, is deeply influenced by the heat of hydration of cement. In this paper, 3D finite element method(FEM)models are set up to analyze the temperature distribution and thermal stresses of the spread footing during the first seven days after concrete placement. The mechanical properties of early age concrete are calculated, which are further used in the FEM models. The possibilities of crack growth are estimated by the method of crack index. The crack indexes of quite a number of points are very close to the allowable limit of 1.0 during the last three days. It is also indicated that the influence of foundation ring on the thermal stresses of concrete can be neglected. 展开更多
关键词 下线 服务 迁移
下载PDF
Construction Technical Temperature Cracking for a and Control of Concrete Plate Type Raft Foundation
19
《International English Education Research》 2013年第12期111-114,共4页
关键词 英语教学 教学方法 阅读教学 课外阅读 英语语法
下载PDF
Effects of Elevated Temperature and Storage Mode on High Performance Concrete Behavior
20
作者 Nadia Tebbal Zine El Abidine Rahmouni Hadda Hadjab 《材料科学与工程(中英文A版)》 2013年第4期243-248,共6页
关键词 混凝土性能 高温诱导 存储模式 各向异性材料 隧道火灾 安全评价 机械性能 化学变化
下载PDF
上一页 1 2 162 下一页 到第
使用帮助 返回顶部